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Abstract

Phrase-based statistical machine translation (SMT) has a severe data sparsity prob-
lem in computing translation probabilities. In this thesis, we present and analyze
various usages of word classes to alleviate the sparsity and improve the translation
quality of a phrase-based SMT system.

First of all, we propose a novel smoothing formulation of phrase translation mod-
els, using word classes on the word level within a phrase. Secondly, we modify the
standard phrase-based decoder to utilize word class phrases as additional transla-
tion options. Finally, we investigate the word alignments trained from word classes.

The performance of our proposed approaches is measured on three different trans-
lation tasks to prove their broad applicability. The experiments show that our
smoothed translation model is comparable to the state-of-the-art word class models
with a smaller number of features. In addition, our modified decoder significantly
reduces the out-of-vocabulary rate and enhances the overall translation quality in
both automatic metrics and manual evaluation.

We also make an extensive comparison among different word class mappings in
terms of their performance in phrase-based SMT. Our results reveal that only the
number of classes affects the translation quality of our proposed methods, regard-
less of the type of clustering algorithms and other parameters for estimating word
classes.
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Chapter 1

Introduction

Statistical machine translation (SMT) has achieved an outstanding success over the
last decade by adopting phrases as atomic translation units. Phrase-to-phrase trans-
lation simplifies the modeling of local reorderings and multi-word lexical choices,
producing more natural translations than word-based translation systems [Zens &
Och+ 02, Och 02, Koehn & Och+ 03]. However, since phrase vocabulary is much
larger than word vocabulary, much larger training data is needed to obtain reli-
able statistics for phrase-based SMT. Unfortunately, for many language pairs, it
is highly demanding to collect a sufficient amount of bilingual corpora for training
robust phrase translation models.

A fundamental solution to the sparsity problem in many natural language pro-
cessing (NLP) tasks is to reduce the vocabulary size. Most probability models
for NLP are built on a huge, discrete word vocabularies. By mapping words onto
a smaller label space, the models can be effectively trained to have denser dis-
tributions. The label also enriches the resulting systems by conveying additional
information for each word. The examples of such labels include part-of-speech
(POS) tags, morphological stems or automatically generated word classes. They
have been used in language modeling [Brown & deSouza+ 92], named entity recog-
nition (NER) [Miller & Guinness+ 04, Liang 05] or parsing [Koo & Carreras+ 08]
for smoothing sparse word models. In this thesis, we investigate the application of
word classes to phrase-based SMT.

A word class is a grouping of words with syntactic/semantic similarity and can
be automatically determined by clustering algorithms. Unlike other word labels,
its estimation is fully unsupervised; the clustering does not require model training
with language-specific annotations. This is particularly appealing to SMT tasks
where various languages are handled at the same time. Moreover, the structure and
size of a word class vocabulary can be arbitrarily adjusted by the corresponding
clustering parameters, which makes it possible to control the degree of smoothing.
Traditionally in word-based SMT, word classes are used to smooth the alignment
models of IBM models 4 and 5 [Brown & Pietra+ 93].

For phrase-based SMT, this work proposes a novel formulation of smoothing
phrase translation models based on word classes. We build a smaller phrase vocab-
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Chapter 1 Introduction

ulary by replacing each word in a phrase with its corresponding word class. Our
model is unique in that it replaces one word at a time to construct phrases with both
words and word classes. We evaluate our method on a small dataset (IWSLT 2012
German→English) and two large datasets (WMT 2014 English→German, WMT
2015 English→Czech), proving its comparable performance to the state-of-the-art
with a smaller number of features.

We also empirically study word class smoothing of language models in a phrase-
based SMT system. Our experiments show that word class language models con-
sistently improve the baseline system in combination with the smoothed translation
models. We verify that their performance can be further enhanced by refactorizing
with the class membership probability, i.e. the conditional probability of a word
for a given class.

Apart from the modeling, we develop a class-based paraphrasing method which
can be easily integrated into phrase-based decoding. The idea is to substitute a
word in a phrase with another word if both words are in the same word class. In
this way, we obtain new phrase pairs which are not extracted from the training
corpus. We propose a simple modification of the standard phrase-based decoder
to use these paraphrases as extra translation options. This method considerably
improves the translation quality, according to our results.

We additionally present a method for training word alignments from word classes.
Before running a word alignment tool, we preprocess a bilingual training corpus by
replacing every word with its respective word class. The acquired alignment is
merged with the original word alignment or directly applied to compute word class
model scores.

Our experiments are carried out with various word class mappings, which differ
in clustering algorithm, clustering iterations, initial clusterings and the number of
classes. The motivation is to find the optimal word class mapping which maximizes
the performance of our proposed methods. The results reveal that the word class
estimation only the number of classes has an effect on the translation quality of
some word class models.

Related Work

There have been numerous attempts on utilizing additional word labels in phrase-
based SMT. An early group of work focuses on pre- and postprocessing bilingual
corpora with syntactic labels, compensating for the difference in word order between
source and target languages [Xia & McCord 04, Collins & Koehn+ 05, Popovic̀ &
Ney 06].

Another approach is to insert separate steps in the translation process, which
use word labels to improve the model accuracy and refine the search space. The
work in this direction is biased towards inflection modeling with morphological
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labels [Toutanova & Suzuki+ 08,Fraser & Weller+ 12,Chahuneau & Schlinger+ 13],
for which one needs to train linguistic analyzers per language. The integration of
these methods into current phrase-based systems requires substantial modifications
of the training and translation pipelines.

[Yang & Kirchhoff 06] extract hierarchical paraphrases using a morphological
analysis and use them as translation options. Their approach normalizes the trans-
lation scores of the paraphrases along with original phrases, eventually having a
discounting effect. Our decoder modification is inspired by their work but differs
in the following aspects:

• We use automatically clustered word classes to avoid any language-specific
analysis.

• Besides the application in decoding, we build an additional translation model
with the same paraphrasing concept.

• We define a separate parameter for weighting the score of the paraphrases,
which is directly tuned with respect to translation metrics.

[Koehn & Hoang 07] introduce a generic framework for integrating multiple word-
level labels as factors into the standard phrase-based SMT process. It consists of
the following three steps:

1. The mapping from words to labels

2. The Label-to-label translation

3. The generation of words from labels

Assuming probabilistic mappings between words and labels, the first and third steps
imply a combinatorial explosion in the number of phrase translation rules. [Koehn
& Hoang 07] solve this problem by aggressive pruning.

Recent research is devoted to exploit word labels with only a little change of the
existing system, e.g. by adding new features to the existing modeling, or no change
at all. [Green & DeNero 12] design a syntax agreement model on the target side
using morpho-syntactic labels. [Cherry 13] use word classes to reformulate sparse
reordering features. [Wuebker & Peitz+ 13] train the standard translation, language,
and reordering models on word classes. They show a simplified case of [Koehn &
Hoang 07] by adopting hard assignment from words to labels, dramatically reducing
the phrase table size and implementation effort. Our work is also based on their
simplified assumption, but presents a more efficient and elaborate translation model.
A comparative study on language models with additional labels is found in [Bisazza
& Monz 14].

In a completely different direction, [Foster & Kuhn+ 06] apply language model
smoothing techniques to phrase translation models. They treat a phrase as a single
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Chapter 1 Introduction

entity of a phrase n-gram and perform backoff by removing the entity from the con-
ditioning part, e.g. p(f̃ |ẽ) → p(f̃). Dealing with phrase pairs, their formulation is
restricted only to bigrams. Also, it does not involve further analysis of the inside of
phrases. According to our experience, their performance is very limited, especially
when a word-based lexicon model is already being used.

The remainder of this thesis is structured as follows. In the next chapter, we first
review the entire phrase-based SMT pipeline and identify room for improvement
with word classes. Chapter 3 explains the concept of word classes and possible
algorithms for estimating them. Our proposed methods are thoroughly described
in Chapter 4. The experimental settings and results are shown in Chapter 5. We
conclude with a summary and future work in Chapter 6.
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Chapter 2

Phrase-Based Statistical Machine
Translation

This chapter describes each component of the phrase-based SMT process. We
explain its core concepts with mathematical formulations and analyze the points to
be enhanced using word classes.

2.1 Word Alignments

For a translation task, a pair of sentences in two different languages is considered.
One is a sentence to be translated (source sentence) and the other is its translation
(target sentence). Such pair is called a bilingual sentence, represented as sequences
of words:

fJ1 = f1, ..., fj , ..., fJ (2.1)

eI1 = e1, ..., ei, ..., eI (2.2)

where fj denotes a source word and ei a target word. J and I are the lengths of the
source sentence and the target sentence, respectively. In SMT, a set of bilingual
sentences is needed to train the models.

Before the training, one must know which target word is the translation of which
source word in each bilingual sentence. In other words, each target word should be
aligned to the related source words, and vice versa. Figure 2.1 shows an example
of word alignments. Our notation for source-to-target alignments is

aJ1 = a1, ..., aj , ..., aJ , (2.3)

where aj denotes the target word positions aligned to fj :

aj ⊆ {1, ..., I} or aj = {0} (2.4)

Position 0 stands for an empty target word, thus {0} indicates that a source word
is not aligned to any target word.
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that
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Figure 2.1: Word alignments of a German-English sentence pair, learned with GIZA++. The
German word “Sie” and the English word “it” are unaligned. The English word
“that” is wrongly aligned to the German word “verstehe” which has the meaning
of “understand”.

In most cases, word alignments are not accompanied with a bilingual corpus.
Annotating bilingual sentence pairs with word alignments requires an enormous
human effort. Alternatively, word alignments can be automatically learned using
statistical models. GIZA++ is the most widely used software for this purpose,
based on the IBM models and the hidden Markov model [Och & Ney 03]. We use
GIZA++ throughout all experiments of this thesis.

The quality of statistically trained word alignments is far behind the human work.
It is considerably varying with model selection and parameters, and is subjective
depending on the context. To remedy this, several different word alignments are
often merged using heuristics, e.g. union or intersection.

An efficient method for producing a meaningfully different word alignment is to
train alignment models with a modified text. For example, the same corpus with
a reversed word order for each sentence feeds the models with word collocations
in the inverse direction. Another idea is to replace each word with other entities,
which deliver additional information on the word.

2.2 Phrase Extraction

For phrase translation, one should also learn phrase alignments from bilingual sen-
tences, i.e. how multiple target words are aligned to multiple source words. The
aligned phrase pairs are used as basic translation rules of a phrase-based SMT
system.

For mathematical/implementational simplicity, the early phrase-based SMT sys-
tems [Zens & Och+ 02,Och 02,Koehn & Och+ 03] define a phrase to be a continuous
sequence of words. This restriction is relaxed in later research by allowing hierarch-
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2.2 Phrase Extraction

ical [Chiang 07] and discontinuous phrases [Galley & Manning 10]. Within this
work, we follow the original definition of phrases. Our general notations for source
and target phrases are:

f̃ = fj1 , ..., fj2 (2.5)

ẽ = ei1 , ..., ei2 (2.6)

where j1 and i1 are the begin positions and j2 and i2 are the end positions of
the phrases. Based on this definition, we use extraction heuristics of [Och 02] and
extract only those phrase pairs whose words are aligned only within the phrase
boundaries. An example of the phrase extraction is shown in Figure 2.2 and Table
2.1.

well

,

hello

.

j
a ,

g
u
t
e
n

T
a
g .

Source phrase Target phrase

ja well
ja , well ,
ja , guten Tag well , hello
ja , guten Tag . well , hello .
, ,
, guten Tag , hello
, guten Tag . , hello .
guten Tag hello
guten Tag . hello.
. .

Figure 2.2 & Table 2.1: [Zens 08] A bilingual sentence and the extracted phrase pairs.

All the extracted phrase pairs are stored in a phrase table along with their model
scores. The phrase table is queried during the actual translation step (Section 2.5).
A target translation eI1 is generated by applying the phrase pairs to a given source
sentence fJ1 . In this respect, a sentence pair (fJ1 , e

I
1) can be seen as a sequence of

phrase pairs (f̃K1 , ẽ
K
1 ). We introduce the notation of phrase segmentation for each

k = 1, ...,K

k → sk := (ik; bk, jk), (2.7)

where ik is the end position of the k-th target phrase, and bk and jk are the begin
and end positions of the k-th source phrase, respectively. Using these indices, we
denote each phrase pair (f̃k, ẽk) as:

f̃k := fbk , ..., fjk (2.8)

ẽk := eik−1+1, ..., eik (2.9)
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Chapter 2 Phrase-Based Statistical Machine Translation

2 Phrase-based SMT

i3

b2
j2
b1

j1
b3

j3
b4

j4 = J

i1

i2

0 = j0
0 = i0

I = i4

source positions

ta
rg

e
t
p
o
si
ti
o
n
s

Figure 2.2. Illustration of phrase segmentation.

Here ik denotes the last position of the kth target phrase and the pair (bk, jk)
denotes the start and end positions of the source phrase which is aligned to the kth
target phrase. We set i0 := 0 and j0 := 0. In our definition all words in source and
target sentence have to be covered by exactly one phrase.

Given the sentence pair (fJ
1 , e

I
1) and the segmentation sK1 we define the bilingual

phrase pairs as:

ẽk := eik−1+1 . . . eik (2.2)

f̃k := fbk . . . fjk (2.3)

Figure 2.2 illustrates this notion of phrase segmentation. Note that our definition of
the segmentation sK1 explicitly contains the information on phrase-level reordering.

6

Figure 2.3: [Zens 08] Illustration of phrase segmentation.

This notation implicitly includes phrase reordering information. Figure 2.3 shows
an example segmentation of a bilingual sentence. Note that there are no overlapping
phrase pairs, since no source word is translated twice.

2.3 Models

Given a source sentence, an SMT system scores its target translations with probab-
ility models which represent aspects of translation quality. Translation is a highly
complex task; to accurately translate a sentence, diverse factors must be considered
at the same time, e.g. word/phrase lexicon, semantics, grammar, etc. Log-linear
modeling is a suitable probabilistic framework for this purpose [Berger & Pietra+

96, Och & Ney 02]. It can effectively combine hundreds or thousands of features.
Using log-linear framework, the probability of a target translation given a source
sentence can be modeled as:

p(eI1|fJ1 ) = max
K,sK1

exp
(∑M

m=1 λmhm(eI1, s
K
1 ; fJ1 )

)

∑
e′I′1 ,s′K′1

exp
(∑M

m=1 λmhm(e′I
′

1 , s
′K′
1 ; fJ1 )

) (2.10)

where hm is an individual model and λm is the corresponding model weight. Each
model is built upon the statistics gathered from training corpora. Note that hm is
not necessarily a probability distribution; it can be any type of a scoring function,
e.g. an unnormalized count or an extremely sparse binary feature. The scores are
scaled by λm and easily integrated into the overall probability model. Due to its
flexibility, log-linear models are adopted in solving various NLP problems, includ-
ing part-of-speech tagging [Ratnaparkhi 96], named entity recognition [Borthwick
& Sterling+ 98], and language modeling [Khudanpur & Wu 00]. In the follow-

8



2.3 Models

ing sections, we present the standard set of features used in our log-linear model
combination.

Phrase translation model

The most essential feature in phrase-based SMT is the phrase translation model.
Given a bilingual sentence and its phrase segmentation, the phrase translation
model is defined as follows:

hPhr(e
I
1, s

K
1 ; fJ1 ) =

K∑

k=1

log pPhr(f̃k|ẽk) (2.11)

where the phrase translation probability for each phrase pair (f̃ , ẽ) is estimated
using relative frequencies:

pPhr(f̃ |ẽ) =
N(f̃ , ẽ)

N(ẽ)
(2.12)

For a symmetric modeling, the model is also built in the inverse translation direction
using pPhr(ẽ|f̃).

Relative frequencies are prone to overfitting. It readily produces unreliable scores
for infrequent events, e.g. long phrases or phrases containing rare words. For
morphologically rich languages, e.g. Arabic or German, even common phrases tend
to have low counts; since they appear in many different forms depending on the
syntactic context, distributing the counts over several morphological variations.

Word-based lexicon model

To compensate for the sparsity of the phrase translation model, each phrase is
decomposed into words and their word translation probabilities are calculated. A
word lexicon has much smaller vocabulary than phrase lexicon, so its counts are
more robust given the same amount of training data. We define a word-based
feature function by summing up all word translation probabilities within the phrase
boundary [Zens 08]:

hLex(eI1, s
K
1 ; fJ1 ) =

K∑

k=1

log

jk∏

j=bk

1

|ẽi|

ik∑

i=ik−1+1

p(fj |ei) (2.13)

which is analogous to IBM model 1 [Brown & Pietra+ 93]. We use relative frequen-
cies to compute p(f |e) just as the phrase translation model. The probability sum
over the target positions is normalized by the length of the target phrase ẽi, oth-
erwise longer target phrases unintentionally have higher scores. The inverse model
for the source-to-target direction is defined in a similar way with p(e|f).

9



Chapter 2 Phrase-Based Statistical Machine Translation

The word-based lexicon model was proposed with the birth of phrase-based
SMT [Koehn & Och+ 03], and still widely accepted as a standard feature in re-
cent phrase-based SMT systems. The model has, however, two main drawbacks.
First, local contexts are too coarsely considered. Neighboring words are regarded
only as triggers to a single word on the opposite side, and the relation between
them, e.g. lexical preferences in the phrase context and local reorderings, are ig-
nored. Second, the model still overfits for rare words, although it effectively handles
rare phrases.

Language Models

The translation of a source sentence can be seen as the generation of a target
sentence given a set of clues. In all language generation problems, e.g. automatic
speech recognition, language model is a core component to ensure the generated
sentence to be actually probable in terms of syntax and semantics. SMT systems
also utilize a language model, which is estimated as an n-gram Markov model of
the target words:

hLM (eI1, s
K
1 ; fJ1 ) =

I∑

i=1

log p(ei|ei−1i−n+1) (2.14)

n-gram models also suffer from the sparsity problem. It is addressed by backing
off to lower-order n-gram probabilities. For a more precise modeling, multiple
language models can be combined together, each of which is trained with different
lexical entities such as POS tags or word classes [Koehn & Hoang 07].

Reordering Models

Languages have different word orders. For instance, in Korean sentences, an object
occurs before the corresponding verb, while in English the order is swapped. To
generate grammatically correct translations, SMT systems should rearrange the
translated phrases in the target language. Such reorderings can be simply modeled
with the following distortion penalty:

hDP (eI1, s
K
1 ; fJ1 ) =

K∑

k=1

qDist(bk, jk−1) (2.15)

with

qDist(j, j
′) :=

{
|j − j′ + 1| if |j − j′ + 1| < D

∞ else
(2.16)

10



2.4 Training

which is the distance from the begin position of the current phrase to the end
position of the last phrase. The parameter D controls the maximum distortion
length allowed. More complicated models are also used to capture exact reorder-
ing behaviors with respect to specific words [Tillmann 04, Galley & Manning 08].
Those lexicalized models have severe sparsity problem, since the model complexity
is multiplied by the size of the word vocabulary.

2.4 Training

After the estimation of individual features hm, the scaling factors λm have to be
optimized such that the resulting log-linear model (2.10) well explains the transla-
tion between two languages. For this purpose, a separate bilingual corpus is used,
which is disjunct from the one used for training the features. It is called a devel-
opment set, denoted by (F ,R), where F is a sequence of source sentences and R
is the corresponding reference translations. Using a development set, we expect to
prevent the log-linear model from overfitting to training data.

The minimum error rate training (MERT) [Och 03] is a state-of-the-art algorithm
for training λm with respect to a final evaluation metric, e.g. BLEU [Papineni &
Roukos+ 02]. It optimizes the following criterion:

λ̂M1 = arg min
λM1

{
E(R, Ê(F , λM1 ))

}
(2.17)

where Ê is the best hypothesis translation of F and E(R, Ê) is the error of the
hypothesis for a given metric. An SMT system produces N -best translations with
different set of parameters λM1 , and select the set whose hypothesis has the minimal
error. The error measure E can be constructed with any evaluation metric for SMT.
We train λM1 using MERT with the BLEU metric in all our experiments.

The main disadvantage of MERT is that it does not reliably optimize the scaling
factors when the number of features M is too large, i.e. over approximately 30. It is
because the algorithm is not regularized and use non-convex loss function. A current
research direction is to develop a scalable training method which accommodates
hundreds or thousands of features, which is especially useful for a rich set of binary
features [Chiang & Knight+ 09,Hopkins & May 11,Green & Wang+ 13]. Since our
system uses MERT, it is crucial to keep the number of features reasonably small.

2.5 Decoding

A phrase-based SMT system generates the best translation of a given source sen-
tence according to the utilized model. It is referred to as decoding, since a source
sentence can be regarded as the unknown, encrypted text and the corresponding
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Chapter 2 Phrase-Based Statistical Machine Translation

target sentence as the readable, decrypted text. Decoding is achieved by the Bayes
decision rule:

fJ1 7−→ êÎ1(fJ1 ) = argmax
I,eI1

max
K,sK1

{
M∑

m=1

λmhm(eI1, s
K
1 ; fJ1 )

}
(2.18)

The Bayes decision rule performs a maximization over all possible target sentences
eI1 and over all possible phrase segmentations sK1 , which is infeasible in practice.
Therefore, the search space is restricted to contain only highly probable translations,
discarding numerous unlikely candidates. Here, we present a standard procedure
of phrase-based decoders.

2.5.1 Phrase Matching

Prior to the actual search, it is beneficial to mark all the phrase pairs that can
actually be used for the given source sentence. We iterate over all possible source
phrases in the sentence and find the matching phrase table entries, which are loaded
into memory for convenient use. The more matching is done, the more phrase
translation options are available.

Note that the matched phrase pairs are only the ones extracted from a bilingual
training corpus. If the training data does not contain enough examples, one might
not have necessary translation options for the given source sentence. The straight-
forward solution is to increase the training corpus size, which may not be available
for low-resource language pairs. An alternative is to manipulate the extracted
phrase pairs to obtain extra phrase pairs. Section 4.2 explains such a method using
word classes.

2.5.2 Search Graph

In search, we exploit dynamic programming [Bellman 57] to find the best hypothesis
translation. We begin with an empty hypothesis and expand it incrementally by
appending one target phrase at a time. For each partial hypothesis, we first check
which source words are not translated yet, and choose a continuous sequence f jkbk =

f̃k to be translated next. We retrieve the list of possible target translations ẽk for f̃k
from the subset of matching phrases, which are then used to expand the hypothesis.
To keep track of the words that have been translated, we maintain a coverage set
O ⊆ {1, ..., J} of source positions, which is updated at the end of every expansion.
This set ensures that each source word is translated exactly once. Once all the
source positions have been covered, a complete hypothesis translation is made.

The search procedure can be represented as a directed graph. The nodes are
labeled with coverage sets C, and the edges are labeled with tuples (ẽk, bk, jk) which
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Figure 2.3. Illustration of the search. German input sentence: ’Wenn ich eine Uhrzeit vorschlagen
darf?’. English translation: ’If I may suggest a time of day?’ In each node, we store the
coverage (as a bitvector), the end position of the current phrase and the language
model history (here: bigram). Dashed edges are recombined. The best path is marked
in red. Scores are omitted. Taken from [Zens 08].

on the chosen phrase pair (f̃k, ẽk). For the language model and reordering model
score we require some information on the decisions taken previously. Therefore we
introduce additional labeling for the states, namely the end position of the previous
source phrase and the language model history. If we use an n-gram language model,
the language model history is defined as the last (n−1) words of the target sentence
generated up to the current state. Thus, each state is identified by a triple (C, ẽ, j),
where C denotes the coverage set, ẽ the language model history and j the end
position of the previous source phrase. We call the computation of the successor
states of a given state (C, ẽ, j) hypothesis expansion. An example for this search
graph is shown in Figure 2.3.

The search problem is equivalent to finding the optimum path within the described

11

Figure 2.4: [Zens 08] The search graph for translating the German sentence “Wenn ich eine

Uhrzeit vorschlagen darf ?”. Each node is labeled with coverage set C (as
a bit vector), the end position j of the previous source phrase, and the language
model history (here: bigram). Dashed edges indicate recombination: a path is
ignored when another path has a higher score with the same translation. The
optimal path (“If I may suggest a time of day ?”) is marked in red. Scores
are omitted within this figure.

indicate each expansion. Accordingly, a hypothesis translation is a path through
the graph, starting from the root node C = ∅.

In the log-linear framework, a hypothesis score can be easily split into phrase-
level scores, i.e. sum over individual expansions. At each expansion (ẽk, bk, jk), we
update the score of a hypothesis on the fly by simply adding up the score of that
expansion. For most features, the expansion score depends only on the current
phrase pair (f̃k, ẽk). Thus, in the search graph, each edge contains the features
scores of the corresponding expansion. On the other hand, there are also features
which we need the information of previous expansions, e.g. the language models
and the distortion penalty. Hence, each node additionally stores the target n-gram
history ẽ and the end position j of the preceding source phrase. For a given coverage
set O, there are various ẽ and j, depending on the expansion sequence. Thus, each
node is labeled with a triple (O, ẽ, j). Figure 2.4 shows an example of such a search
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Chapter 2 Phrase-Based Statistical Machine Translation

graph. The decoding problem is equal to finding the optimal path in a search graph.

Note that the target sentence is generated in monotonous order, i.e. target
positions are covered from 0 to I, consecutively. On the other hand, there is no
specific order of the source positions when choosing source phrases for expansion.
This makes the implementation simpler while allowing arbitrary phrase reorderings.
In addition, we can make use of n-gram history on the target side even beyond the
phrase boundaries.

2.5.3 Pruning

The complexity of a search graph is exponential in the length of the given source
sentence. Finding the optimal path in the graph is an NP-hard problem [Knight
99]. Hence, an approximate method is used to reduce the search space and speed
up the translation.

Beam search [Jelinek 98] is the technique which most phrase-based decoders
adopt for this purpose. The idea is to prune unreliable hypotheses in the middle
of traversing a search graph, according to the partial score for the traversed path.
Additionally, we also consider the score for the remaining path to the end node,
which cannot be exactly computed but can be estimated with heuristics. This is
denoted as rest cost estimation, for which we apply the heuristics of [Zens 08] in
this work. It intends to protect those hypotheses from being pruned, which have
low partial scores at early stage but might be expanded to promising translations
at completion. The degree of pruning is controlled by two kinds of parameters:
The histogram size Nh is the number of hypotheses not to be discarded [Steinbiss
& Tran+ 94], and threshold τ is the maximum score difference allowed between a
hypothesis and the best hypothesis.

Pruning can be done at several levels in search. First, before the actual search
starts, we limit the number of target phrases per given source phrase. Here, we
hope to filter out meaningless phrase pairs extracted from wrong word alignments.
This pruning is based on the standard scores in the phrase table and language
model score within the target phrase boundaries. Secondly, after we construct all
the hypotheses which share the same coverage set O, we perform pruning among
them. In the third level, we consider all the hypotheses with a given cardinality c,
which is the number of source positions covered by O. Finally, for each cardinality
c, we ignore those coverage sets whose the most probable hypothesis accords with
pruning criteria.

For fair comparison of costs with respect to covered source positions, we traverse
a search graph according to the cardinality of coverage sets. From the root node,
we first construct all hypotheses of cardinality c = 1, using only single-word phrase
translation rules. Then we proceed to cardinality c = 2 by expanding hypotheses of
cardinality 1 with single-word phrase pairs, or the empty hypothesis with two-word
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c−1c−2 c c+1

Coverage Set

Figure 5.3: Illustration of the search. For each cardinality, we have a list of coverage
hypotheses (boxes). For each coverage hypothesis, we have a list of lexical
hypotheses (circles). A hypothesis with cardinality c can be generated by ex-
panding a hypothesis of cardinality c−1 with a one-word phrase, by expanding
a hypothesis of cardinality c− 2 with a two-word phrase etc..

Additionally, we apply observation histogram pruning with parameter No. Thus, if
there are more than No target phrases for a particular source phrase, then we keep
only the top No candidates.

2. Lexical Pruning per Coverage. Here, we consider all lexical hypotheses that
have the same coverage C. The hypotheses may differ, for instance, in their language
model history ẽ or the end position of the last phrase j. Here, we include a rest
score estimate R(C, j) which is a estimate for completing the hypothesis (mainly for
the distortion model which depends on j). A detailed description of the rest score
estimate will be given in Section 5.2.4. Let τL denote the pruning threshold and let
Q(C) denote the maximum score of any hypothesis with coverage C:

Q(C) = max
ẽ,j

{
Q(C, ẽ, j) +R(C, j)

}
(5.15)

Then, we keep a hypothesis with score Q(C, ẽ, j) if:

Q(C, ẽ, j) +R(C, j) + τL ≥ Q(C) (5.16)

55

Hypothesis

Figure 2.5: [Zens 08] Illustration of the source cardinality synchronous search. For each
cardinality, we have a list of coverage sets (boxes). For each coverage set, we have
a list of hypotheses (circles). A hypothesis of cardinality c (filled circle) can be
expanded from a hypothesis of cardinality c-1 with a single-word phrase, or from
a hypothesis of cardinality c-2 with a two-word phrase, and so forth.

phrase pairs. The search is continued in this way until we reach the maximum
cardinality of coverage sets, i.e. the length of given source sentence. This search
scheme is called source cardinality synchronous search, which preserves a topological
order in traversing a search graph. Figure 2.5 illustrates the search procedure. The
algorithm can be found in [Zens 08].
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Chapter 3

Word Classes

In this work, we adopt word classes to refine several components of phrase-based
SMT. This chapter reviews the definition, properties and estimation methods of
word classes.

The concept of automatically generated word classes first appears in [Brown &
deSouza+ 92] for smoothing language models. They perform a clustering over words
based on their collocations in the given corpus without any linguistic knowledge.
The output is a set of classes, each of which contains words of similar meanings or
syntactic roles. Table 3.1 shows some examples of the output.

Class 1: had hadn’t would’ve could’ve should’ve must’ve might’ve

Class 2: head body hands eyes voice arm seat eye hair mouth

Table 3.1: [Brown & deSouza+ 92] Examples of 1000 classes from a 260,741-word English
vocabulary.

Class 1 can be seen as a syntactic class. Its members are abbreviated forms
(except had) of auxiliary verb phrases expressing a situation of the past. They are
gathered in the same class because they appear after a subject and are followed
by a verb in past perfect tense. POS tags categorize words in a similar manner,
but using a classification model. Most POS tagging models should be trained
differently for language with human-annotated data, which is very expensive. Even
for the same language, the predefined tagsets should agree for different datasets.
On the contrary, the estimation of word classes requires no such pre-training and is
universal for all languages. Furthermore, word classes can be a more fine-grained
grouping than POS tags, if the number of classes is set relatively large. For example,
a standard POS tagset classifies English verbs according to only conjugation (Table
3.2) while Class 1 captures writing style and tense concurrently.

Class 2 can be seen as a semantic class about the human body. The words of
Class 2 can be located along with the same verb, e.g. “move”. Note that “seat” is
not a body part but closely related to a body pose. Such semantics is based on the
distributional hypothesis, stating that words occurring in the same context tend to
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VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present

Table 3.2: POS tags used for verbs in the Penn TreeBank English corpus [Marcus &
Marcinkiewicz+ 93].

purport similar meanings [Harris 54]. In computational linguistics, distributional
semantics can be modeled with spectral methods [Deerwester & Dumais+ 90,Dhillon
& Foster+ 11], topic models [Dinu & Laputa 10] or neural networks [Huang &
Socher+ 12, Mikolov & Sutskever+ 13]. With proper similarity measures, these
semantic representations can be grouped into semantic classes using traditional
clustering algorithms, e.g. k-means or nearest neighbors [Schütze 98]. Compared
to the word classes we use in this work, they require a more complex implementation
and much longer estimation time, while the performance gain is marginal in various
NLP applications [Turian & Ratinov+ 10].

From our experience, automatically generated word classes are not well suited
to group morphological variations of the same stem. One reason might be that
a morphological inflection often changes the syntactic position of the word in a
sentence, making the collocation statistically different.

Here, we introduce our notations for word classes. We define a mapping C from
word vocabulary We to class label set C as

C : We → C. (3.1)

Each word e ∈We is mapped to the corresponding class label C(e) ∈ C:

e 7−→ C(e) (3.2)

eI1 7−→ C(eI1) = C(e1), ..., C(eI) (3.3)

where the second line shows a mapping from a sequence of words to a sequence of
classes.

Note that we assume a hard class assignment: Each word belongs to exactly one
class, i.e. p(C|e) = 1 for C = C(e) and p(C|e) = 0 for C 6= C(e). Probabilistic
(soft) classes, i.e. a word can be member of more than one class, have been used
in several monolingual NLP tasks [Merialdo 94, Goldwater & Griffiths 07, Brody
& Laputa 09, Chrupa la 11]. When used in SMT, however, they significantly in-
crease the complexity of modeling and decoding [Koehn & Hoang 07]. This is
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because translation involves a conversion between two languages, which propagates
the complexity blow-up from the source side to the target side. The hard class
assumption avoids the expansion from a single word to multiple classes, facilitating
the integration of word classes into phrase-based SMT with less complexity and an
easier implementation [Wuebker & Peitz+ 13].

For the application in translation, we denote the class mapping on the source
side as Cf and on the target side as Ce:

f 7−→ Cf (f) (3.4)

e 7−→ Ce(e) (3.5)

We denote the word-class mappings for phrases as follows:

f̃k 7−→ Cf (f̃k) = Cf (fbk), ..., Cf (fjk) (3.6)

ẽk 7−→ Ce(ẽk) = Ce(eik−1+1), ..., Ce(eik) (3.7)

3.1 Monolingual Clustering

To estimate a monolingual word-class mapping, a monolingual corpus {eI1} is needed.
The likelihood of the given corpus is defined with respect to a word-class mapping
C

Lmono({eI1}, C) :=
∑

eI1

log p(eI1|C), (3.8)

with the following objective function for each sentence eI1 [Brown & deSouza+ 92]:

p(eI1|C) :=

I∏

i=1

[
p(C(ei)|C(ei−1i−n+1))︸ ︷︷ ︸

(3.9.1)

· p(ei|C(ei))︸ ︷︷ ︸
(3.9.2)

]
. (3.9)

An optimal word-class mapping Ĉ is determined by the maximum likelihood estim-
ation:

Ĉ = argmax
C

Lmon({eI1}, C) (3.10)

Equation (3.9) is a reformulation of a typical word n-gram model. For each
word position i, the equation is factorized into a class n-gram (3.9.1) and a class
membership probability (3.9.2). The former guides Ĉ to have collocation preferences
of class sequences, e.g. Class 1 of Table 3.1 should succeed a class of pronouns
or person names. The latter enforces the distribution of words among classes,
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preventing the optimization from assigning all words to one class. Both probabilities
are estimated by relative frequencies

p(C|C̃) =
N(C, C̃)

N(C̃)
, (3.11)

p(e|C) =
N(e)

N(C)
, (3.12)

where the counts of classes are defined as sums of word-level counts:

N(C) =
∑

e:C(e)=C

N(e), (3.13)

N(C, C̃) =
∑

e:C(e)=C
ẽ:C(ẽ)=C̃

N(e, ẽ). (3.14)

for e ∈ We, C ∈ C and C̃ ∈ Cn−1. [Brown & deSouza+ 92] suggest a bigram
formulation, i.e. n = 2, which is the simplest case of contextual clustering yet gives
substantial performance.

The exact optimization of Lmono is computationally infeasible. Instead, greedy
algorithms can be used to find a reasonable local optimum. [Brown & deSouza+ 92]
apply a bottom-up hierarchical clustering. Starting from each word being its own
class, a pair of classes is merged one at a time until the desired number of classes
is reached. [Kneser & Ney 93] adopts the exchange algorithm, which loops over all
words per iteration, tentatively moving each word to every class and assigning it
to the class that most increases the likelihood (Algorithm 1). The algorithm stops
with an arbitrary convergence criterion, which is normally defined by a maximum
number of iterations.

The exchange algorithm empirically performs equally good as the bottom-up
clustering with regard to the optimized likelihood value, but the computation is
more efficient [Martin & Liermann+ 98,Emami & Jelinek 05]. Besides, the bottom-
up method still needs to run the exchange algorithm on its output classes to achieve
its best performance [Brown & deSouza+ 92]. Hence, we decide to use the exchange
algorithm to estimate monolingual word classes in our experiments.

The most well-known implementation of the exchange algorithm is [Och 95],
which is part of the GIZA++ toolkit [Och & Ney 03]. It integrates generic com-
binatorial optimization algorithms, e.g. simulated annealing or threshold accept-
ing, into the exchange algorithm iterations to avoid bad local optima. [Martin &
Liermann+ 98] describe efficient strategies for updating the count statistics and
computing the likelihood difference in the algorithm. [Botros 15] introduce a paral-
lelized version of [Martin & Liermann+ 98], which linearly accelerates the loop over
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Algorithm 1 Exchange algorithm for monolingual clustering

Input: corpus {eI1}, number of classes K
Output: word-class mapping C

initialize C
repeat

for all e ∈We do
for all C ∈ C do

compute Lmono when e moves to C
end for
move e to the class with the largest increase in Lmono

end for
until convergence condition is met
return C

classes (Line 4 of Algorithm 1). It is also equipped with the threshold accepting
strategy, which is shown to perform best in [Och 95]. We adopt the implementation
of [Botros 15] and add various initialization methods to it.

Our implementation has three adjustable parameters: #iter, ν, and γ. The
algorithm iterations are divided into two phases; the threshold accepting phase and
the hill climbing phase. #iter is the number of iterations in the hill climbing phase.
ν determines the length of the threshold accepting phase: ν×#iter is the number of
iterations for the threshold accepting. γ controls how much worse likelihood values
are allowed in the threshold accepting phase.

One can extend the algorithm by class trigrams, but it tends to overfit to train-
ing data [Botros 15]. Therefore, we stick to the bigram clustering in all of our
experiments.

3.2 Bilingual Clustering

For the usages in SMT, word classes are estimated for both source language and
target language. If we perform monolingual clustering on each language independ-
ently, however, we cannot expect the two sets of classes to correspond to each
other. That is, a class representing a certain meaning may exist only on the source
side or only on the target side. In this case, a class-to-class translation cannot be
accurately modeled.

To increase the correlation between source classes and target classes, [Och 99]
propose a bilingual clustering algorithm which exploits the bilingual corpus with
its word alignments. They define a bilingual joint objective function for a given
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bilingual corpus {(fJ1 , eI1)}:

Lbi({(fJ1 , eI1)}, Cf , Ce) :=
∑

(fJ1 ,e
I
1)

log p(fJ1 , e
I
1|Cf , Ce) (3.15)

=
∑

(fJ1 ,e
I
1)

log
{
p(eI1|Ce)︸ ︷︷ ︸
(3.16.1)

· p(fJ1 |eI1; Cf , Ce)︸ ︷︷ ︸
(3.16.2)

}
(3.16)

where the translation probability (3.16.2) is modeled as

p(fJ1 |eI1; Cf , Ce) =

J∏

j=1

{[ ∏

i∈aj

p(Cf (fj)|Ce(ei))︸ ︷︷ ︸
(3.17.1)

]
· p(fj |Cf (fj))︸ ︷︷ ︸

(3.17.2)

}
, (3.17)

which includes the class transition probability (3.17.1) and the class membership
probability of a source word (3.17.2). As the monolingual case, relative frequencies
are used to estimate both probabilities. Lbi has a prior only for target sentences
(3.16.1), which is identically formulated as Equation (3.9). By performing the
maximum likelihood estimation, one should obtain optimal word-class mappings
for the source language (Ĉf ) and for the target language (Ĉe) simultaneously:

(Ĉf , Ĉe) = argmax
Cf ,Ce

Lbil({(fJ1 , eI1)}, Cf , Ce) (3.18)

As an alternative, one can estimate the target classes Ĉe first and the source
classes Ĉf thereafter with Ĉe unchanged. Based on the fact that the prior (3.16.1)
can be linearly separated from (3.16.2), the following two-step optimization is pos-
sible:

Ĉe = argmax
Ce

Lmono({eI1}, Ce) (3.19)

Ĉf = argmax
Cf

Lbi({(fJ1 , eI1)}, Cf , Ĉe) (3.20)

This aims to make Ĉf consistent with monolingually well-formed Ĉe. Compared to
the two-step approach, we denote the Equation (3.18) as the one-step optimization.

[Och 99] modify the exchange algorithm (Algorithm 1) for the bilingual objective,
shown in Algorithm 2. For the two-step approach, we run Algorithm 1 first and
then Algorithm 2, skipping the loop of Line 3-8.

In [Och 99], the bilingual classes show superior performance to the monolin-
gual classes in the alignment template approach [Och & Ney 04], which is the
predecessor of current phrase-based SMT. Based on these results, there has been
further research on jointly learning word classes of two languages. [Zhao & Xing+

22



3.2 Bilingual Clustering

Algorithm 2 Exchange algorithm for bilingual clustering

Input: bilingual corpus {(fJ1 , eI1)}, number of classes (Kf ,Ke)
Output: bilingual word-class mapping (Cf , Ce)
1: initialize (Cf , Ce)
2: repeat
3: for all e ∈We do
4: for all Ce ∈ Ce do
5: compute Lbil if e moves to Ce
6: end for
7: move e to the class with the largest increase in Lbil
8: end for
9: for all f ∈Wf do

10: for all Cf ∈ Cf do
11: compute Lbil if f moves to Cf
12: end for
13: move f to the class with the largest increase in Lbil
14: end for
15: until convergence condition is met
16: return (Cf , Ce)

05] propose bilingual spectral clustering and apply it to word alignment problem
and phrase extraction. Their results are, however, limited to very small datasets
and lack a comparison to monolingual classes. A bilingual clustering objective is
also constructed with a projection scheme [Tackström & McDonald+ 12] or an in-
formation theoretic approach [Faruqui & Dyer 13], which are tested only on NER
tasks. To the best of our knowledge, we apply bilingual classes to a state-of-the-art
phrase-based SMT system for the first time. We implement the one-step and two-
step algorithms of [Och 99] on top of [Botros 15] and use them in the experiments.
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Chapter 4

Word Classes in Phrase-based SMT

In the previous chapter, we saw that word classes effectively group related words
and they can be efficiently estimated with the exchange algorithm. We now de-
scribe applications of word classes in the modeling, decoding, and word alignment
problems of phrase-based SMT.

4.1 Word Class Models

Most of the models in phrase-based SMT are built upon a discrete space of words.
For example, the n-gram language model (Equation (2.14)) is defined on Wn

e , and
the word-based lexicon model (Equation (2.13)) has an input space of We ×Wf .
The parameters of these models are determined by word counts or word sequence
counts. As mentioned in Section 2.3, these counts have severe sparsity problems
due to the large size of a word vocabulary.

Word classes are an appropriate alternative for building more robust models,
since their space C has a much smaller vocabulary while it still carries meaningful
linguistic information of various types. As we saw in Equation (3.13) and Equation
(3.14), class counts are computed by summing up counts of the words in the class;
if a probability model is defined on a class vocabulary, class counts collect unstable
word counts, e.g. ones, to make the distribution smoother. In formulating a model,
we simply put word classes in place of the words assigned to them, obtaining the
smoothed models. For phrase-based models, we do not need to trim or decom-
pose the phrases—eventually rolling back to word-based models—for smoothing,
retaining the level of phrases in the translation process.

Obviously, word class models cannot be more precise than the fine-grained word-
level models. We can expect a performance gain when both types of models are
interpolated. With the help of the log-linear model combination, word class models
proposed here can be integrated as an additional model into the existing model
combination (Equation 2.10). Additionally, we propose to linearly combine a word
class model with an existing model. For instance, the phrase translation model
can be interpolated with the smoothed word class model (denoted by the subscript
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WC) as follows:

pPhr(f̃ |ẽ) =
σ · pWC(f̃ |ẽ) +N(f̃ , ẽ)

σ +N(ẽ)
(4.1)

The interpolation maintains the underlying log-sum structure of Equation (2.11).
The parameter σ controls the degree of smoothing.

4.1.1 Word Class Translation Model

For the phrase translation model, the most straightforward way of using word
classes is to replace all words in the source and target phrases with their respective
word classes. The model hwcPhr has the same form as Equation (2.11) but employs
the following probability instead of pPhr(f̃ |ẽ):

pwcPhr(f̃ |ẽ) =
N(Cf (f̃), Ce(ẽ))

N(Ce(ẽ))
(4.2)

The same approach can be applied to the word-based lexicon model. The model
hwcLex is basically defined as Equation (2.13), substituting p(f |e) with the class
transition probability:

pwcLex(f |e) =
N(Cf (f), Ce(e))

N(Ce(e))
(4.3)

These two models are referred to as the word class translation model (wcTM)
[Wuebker & Peitz+ 13].

The wcTM can be trained without changing an off-the-shelf procedure for phrase-
based model training, because it has the same structure as standard translation
models [Wuebker & Peitz+ 13]. If the training data is preprocessed by replacing
each word with its word class, the same training procedure produces a phrase table
with wcTM scores in lieu of hPhr and hLex. Here, the word alignment is learned
before this replacement. Consequently, one shall have two phrase tables: One with
the original model scores and the other with word class model scores. Sorting both
tables by the word classes, it is possible to walk through corresponding entries of
the two tables and augment the original table with wcTM scores.

However, the steps presented above necessitates doubles the training effort and
afford an extra storage for the second phrase table, which proves to be inefficient
for large-scale SMT tasks. Therefore, we directly integrate the training of wcTM
into the existing phrase-based training procedure, which is more efficient in terms
of memory and time. Here, we present the core steps of the implementation:

1. Load word-class mappings (Cf , Ce) into memory
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2. When computing the word counts (e.g. N(f̃ , ẽ)), dynamically map the words
to word classes and increment also the counts of classes (e.g. N(Cf (f̃), Ce(ẽ)))

3. Compute the standard translation model scores and the wcTM scores

4. Output all scores into one phrase table

This requires only one training pipeline, and is convenient in practice.

For a more rigorous modeling, we refine the phrase translation model of wcTM
with class membership probability:

hwcPhr+mbs(e
I
1, s

K
1 ; fJ1 ) =

K∑

k=1

log

{
pwcPhr(f̃ |ẽ) ·

jk∏

j=bk

p(fj |Cf (fj))

}
(4.4)

The inverse model is defined in a similar manner with p(e|Ce(e)). This refinement
makes the model closer to the exact factorization of the standard phrase transla-
tion model. Because the class membership probability is higher for more frequent
words in a class, this might filter out unlikely phrase translation rules containing
less frequent words. Our word clustering software is able to generate the class mem-
bership probability table, which can be passed as an additional parameter to the
wcTM training procedure.

4.1.2 Class Smoothing Model

Motivation

The wcTM generalizes all words of a phrase without distinction between them. This
might cause the side effect that an absurd phrase gets a high score or a common
phrase gets a low score. To illustrate this, we consider the English phrase “move
the voice”. It has a very limited use (only in music theory), so it should not be
highly scored. We can expect that the clustering algorithm shown in Chapter 3
will assign “move” to a class of verbs about movement, “the” to a class of articles,
and “voice” to a class about human body (see Class 2 of Table 3.1). wcTM
replaces all words in the phrase with their corresponding word classes, generating
a word class sequence which means “move the body part” (generalized meanings
are slanted). It is a plausible word class phrase and has a high count, thanks to
frequent phrases such as “move the body”, “move the hands, or “move the arm”.
Thus, the wcTM overrates the probability of the phrase “move the voice”. This
is because the word class mapping is not applicable to all kinds of contexts; the
word “voice” is semantically close to the other words in the body part class, yet
has a different usage alongside verbs.

The problem can be partially solved by generalizing only a sub-part of the phrase.
When “move” is substituted with its corresponding word class and the other words

27



Chapter 4 Word Classes in Phrase-based SMT

remain as they are, we obtain a phrase which is supposed to mean “move the

voice”. Since none of the movement verbs are compatible with voice, it should
have a low count. In this manner, we are able to smooth the phrase counts without
distorting the original meaning.

Model

This motivates us to develop the class smoothing model (CSM), which we replace
one word at a time with the respective word class in the phrase translation model.
To formulate CSM, we first introduce the notation for the selective class mapping
in a word sequence:

C({i})(eI1) := w1, ..., C(ei), ..., eI (4.5)

where a set of word positions ({i}) in the superscript indicates which words are to
be mapped to their word class. CSM calculates the average of the smoothed phrase
translation probabilities for all replaced words within a phrase:

pcsm:src(f̃ |ẽ) =

jk∑

j=bk

wj∑
j′ wj′

· p(C({j})f (f̃)|ẽ) (4.6)

where wj is the averaging weight. If we use uniform weights for all word positions j,
the model computes the arithmetic mean. For example, the expansion of Equation
(4.6) with a three-word phrase pair and wj = 1 is:

pcsm:src(f1 f2 f3 | e1 e2 e3) =
1

3
·
[
p(Cf (f1) f2 f3 | e1 e2 e3)
+ p(f1 Cf (f2) f3 | e1 e2 e3)
+ p(f1 f2 Cf (f3) | e1 e2 e3)

]
(4.7)

The probabilities of Equation (4.6) are tallied up in a log-linear way as Equation
(2.11). Initially, we back off only source words, thus this model is referred to the
CSM source (hcsm:src). We also estimate the inverse model with pcsm:src(ẽ|f̃), for
which the source phrases in the conditioning part are generalized.

Next, we define the CSM source + target (hcsm:src+tgt), which generalizes also
target words:

pcsm:src+tgt(f̃ |ẽ) =

jk∑

j=bk

wj∑
j wj

· p(C({j})f (f̃)|C(aj)f (ẽ)) (4.8)
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Figure 4.1: Word alignments of the three-word phrase pair in Equation 4.9.

For each source position j, we replace also the target words aligned to the source
word fj . The model therefore implicitly encapsulates the alignment information.
The following equation is an example:

pcsm:src+tgt(f1 f2 f3 | e1 e2 e3) =
1

3
·
[
p(Cf (f1) f2 f3 | Ce (e1) e2 e3)

+ p(f1 Cf (f2) f3 | e1 e2 e3)

+ p(f1 f2 Cf (f3) | e1 Ce (e2) Ce (e3))
]

(4.9)

where the word alignments are depicted with line segments and the target word
classes are colored in red. Figure 4.1 shows the alignment diagram for this phrase
pair. f1 is aligned to e1, which is backed off to its target class. As f2 has no
alignment points, we do not replace any target word accordingly. f3 triggers the
class replacement of two target words at the same time.

The two types of CSM can be also formulated in the reverse direction; we back off
the target words first and the aligned source words subsequently. This leads to an-
other pair of models: CSM target (hcsm:tgt) and CSM target + source (hcsm:tgt+src).

Additionally, we can revise the CSM with the class membership probability as
wcTM (here for hcsm:src):

pcsm:src(f̃ |ẽ) =

jk∑

j=bk

wj∑
j wj

· p(fj |Cf (fj)) · p(C({j})f (f̃)|ẽ) (4.10)

The CSM constructs phrase pairs with both words and word classes. They are
more robust to unwanted elevations or degradations of translation scores, which is
described at the beginning of this subsection. Furthermore, we can directly utilize
these phrases for a novel paraphrasing method in decoding (Section 4.2).

Weighting Schemes

Depending on how we set the averaging weight, the CSM can have different scor-
ing schemes on the word level. We present three alternatives of weighting for
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CSM source direction models, which can be similarly applied to the reverse models.
Firstly, we use inverse unigram of the replaced source word:

1

wj
=

N(fj)∑
f ′ N(f ′)

(4.11)

which puts more weight on backing off rare words. The intuition here is that a rare
word is the main reason for unstable counts and should be smoothed above all. The
second alternative is an extension of the previous idea to the phrase level:

1

wj
=

N(fbk ... fj ... fjk)∑
f ′ N(fbk ... f

′ ... fjk)
(4.12)

which is the probability of fj being in the current source phrase among all possible
source words. We call this scheme the inverse source phrase replacement probability.
Lastly, we introduce factorizing likelihood:

wj = N(C({j})f (f̃)) (4.13)

which is the count of the generalized phrase. It plays a similar role as the previous
two forms, since the count is higher when a rare word is replaced with a word class.
From the implementation point of view, factorizing likelihood is simpler, because
we make use of the marginal counts of the inverse model while the others need extra
counting.

4.1.3 Word Class Language Model

For smoothing the target side language model, we build a word class language
model hwcLM which redefines the n-gram probability term of Equation (2.14) with
word classes:

p(ei|ei−11 ; Ce) = p(Ce(ei)|Ce(ei−1i−n+1)) (4.14)

where all words are replaced with their respective classes in the formulation. It
models n-gram contexts of word class sequences. Since the class vocabulary reduces
the sparsity of the sequence counts, longer n-gram context can be modeled efficiently
[Wuebker & Peitz+ 13].

We can incorporate the class membership probability also in the wcLM:

p(ei|ei−11 ; Ce) = p(ei|Ce(ei)) · p(Ce(ei)|Ce(ei−1i−n+1)) (4.15)

This is the conventional formulation of word class n-gram models for language
modeling [Brown & deSouza+ 92], but not widely used in machine translation. In
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Section 5.3, we empirically verify the utility of the class membership probability in
wcLM for SMT.

Both forms of wcLM can be easily trained using an existing language model
toolkit [Stolcke 02], if the monolingual training data is preprocessed in the same
way as in Section 4.1.1.

4.1.4 Other models

Other types of models can be also candidates for word class smoothing. As an
example, we apply the same idea of class replacements to hierarchical reordering
model (HRM) [Galley & Manning 08], named as wcHRM [Wuebker & Peitz+ 13].

4.2 Word Class Decoding

Motivation

We cannot extract all possible phrase pairs from a limited amount of bilingual data,
resulting in a specific upper limit for the improvement with better modeling of the
existing phrase pairs. This encourages the method of generating additional phrase
pairs which supplements the conventional phrase extraction. One possible way is
to manipulate the extracted phrases with linguistic variations.

Word classes can be used to replace each word in a phrase, since they have words
which are linguistically linked to the replaced word. When a word in a phrase is
substituted with its corresponding word class, we can expand the class to other
member words within the same class, creating new phrase pairs which could not be
extracted from the training corpus before.

If word classes are estimated on a large monolingual corpus, we might also have
class mappings for OOV words. In such cases, we can obtain phrase pairs including
OOV words. Since it is much easier to acquire monolingual data than bilingual
data, it should be particularly attractive for low-resource SMT tasks.

We realize this idea in the standard phrase-based decoder to use those para-
phrases as additional translation options, enlarging the search space.

Relation to Class Smoothing Model

To this end, we reuse the generalized phrase pairs for the CSM. They are originally
the phrase pairs extracted from the training data, but some words are replaced with
their word classes. We therefore only need to expand those classes for obtaining the
paraphrases. Also, CSM phrase pairs restrict the class replacement to a single word
on one side and the aligned words on the other side, which is a reasonable trade-off
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between efficiency and diversity of the paraphrasing. If more words are changed,
then we are abundant in paraphrases, however, their average quality becomes worse;
too many substitutions on the word level may distort the meaning of the original
phrase, where the local context is not guaranteed to be preserved. If fewer words
are changed, then the whole procedure becomes efficient, but we may be short of
useful paraphrases.

When used in the translation process, the source side of a CSM phrase pair does
not require actual expansions of classes to words. For a phrase segment of the
given source sentence, we are interested not in its paraphrases themselves, but in
the target translations of the paraphrases (Figure 4.2). On the other hand, we need
to expand the classes on the target side, producing word-only phrases which can
be written in the translation output (Figure 4.3).

Figure 4.2: Paraphrasing of a German phrase using the CSM source model. A dashed edge
with a circle tip represents a word-class mapping. Dashed arrows indicate class
expansions. “$C” is the prefix for class labels. The German phrase “gewechselt
werden” originally has only a translation to “be shifted”, but can be translated
to its synonyms, e.g. “be changed”, by the paraphrasing. Phrases in parentheses
are source paraphrases, which are not explicitly constructed in decoding. Extracted
from IWSLT 2012 German→English TED talk data with 1000 monolingual classes
on the source side.

Figure 4.3: Paraphrasing of a German phrase using the CSM target model. Data source and
legends are the same as Figure 4.2. The target phrase “be shifted” is rephrased
to e.g. “be altered”, by the class expansions. Used 1000 monolingual classes on
the target side.
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The standard phrase-based decoder can directly use the CSM phrase pairs as
translation rules only if we compute all model scores for them. The source-to-
target and target-to-source phrase translation scores are equal to the CSM scores,
for which we can profit from the same training procedure of the CSM. For the word-
based lexicon model scores, we compute class-to-word (p(f |Ce), p(e|Cf )), word-to-
class (p(Cf |e), p(Ce|f)) and class-to-class (p(Cf |Ce), p(Ce|Cf )) translation lexica.
Whenever a class is located in place of a word in the CSM phrase pair, one of
these probabilities stands in for the word translation lexicon. As an example, for
the first CSM phrase pair in Figure 4.2, p($C560|be) and p($C560|changed) are
used instead of p(gewechselt|be) and p(gewechselt|changed). These lexica can
be easily computed using the existing word-based lexicon and a bilingual word-
class mapping. Besides, the majority of the models can be scored by adding up the
scores of all the paraphrases, e.g. the wcTM and the lexicalized reordering models
(LRM). The models which do not consider lexical identities, e.g. penalty terms, do
not necessitate special care.

A CSM phrase pair and its model scores constitute a complete phrase table entry.
Such entries are appended to the original phrase table, queried by the decoder on
an equal footing with the normal phrase pairs. It should be noted that CSM phrase
pairs have a different scale of scores from the original phrase pairs. This is due to
the aggregation of counts with respect to the classes. We resolve this discrepancy
by introducing the membership probabilities of the class replacements. They have
the effect of refactorizing the class-based formulation to be on the word space.
We use the product of these probabilities as an additional model in the log-linear
combination, rather than multiplying each model score by them:

hmbs(e
I
1, s

K
1 ; fJ1 ) =

K∑

k=1

[
jk∑

j=bk

1Bf
(j) · log p(fj |Cf (fj))

+

ik∑

i=ik−1+1

1Be(i) · log p(ei|Ce(ei))
]

(4.16)

where 1B is an indicator function with a set of back-off positions B. For a normal
phrase pair without any class, this score is zero, which does not affect the total score.
The advantage here is that the degree of the rescaling (λcsm) can be automatically
tuned by MERT, maximizing the translation performance on a development corpus.

Decoder Modifications

Algorithm 3 summarizes the necessary changes in the decoding algorithm for ex-
ploiting the CSM phrase pairs. The major change occurs in the phrase matching
step (Section 2.5.1). For each source phrase in the input sentence, we also seek for
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Algorithm 3 Phrase-based SMT decoding with CSM phrase pairs

Input: input sentence fJ1 , phrase table T extended with CSM phrase pairs
Output: target translation eI1

Variables:

S = a set of source positions for the class replacement
matchList[f̃ ] = a list of target phrases matched to f̃
matchListCSM [f̃ ][S] = a list of target phrases matched to CSf (f̃)

Nh = observation histogram size for matchList[f̃ ]
Ncsm = observation histogram size for matchListCSM [f̃ ][S]

Phrase Matching:

for all f̃ in fJ1 do
matchList[f̃ ]← T (f̃)
for all S ∈ P({j | fj ∈ f̃ , N(fj) < τu}) \ ∅ do

for all ẽ ∈ T (CSf (f̃)) do
for all Ce in ẽ do

expand Ce to top Nt frequent member words of Ce
end for
matchListCSM [f̃ ][S]← all class expansions of ẽ

end for
end for

end for

Search Graph:

for each next source phrase f̃ to be translated do
expand hypotheses with best Nh translations in matchList[f̃ ]
for all l ∈ matchListCSM [f̃ ] do

expand hypotheses with best Ncsm translations in l
end for

end for
eI1 ← optimal path of the search graph

return eI1

the matching CSM entries in the phrase table. The result of each query (a list of
target translations) is denoted byT (f̃), where T is the phrase table and f̃ is the
search key.

We limit the amount of CSM phrase queries with parameter τu, which indicates
the maximum unigram count of those words to be substituted with their classes.
The idea presumes that a frequent word does not need any generalization, since we
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already have enough statistics for that word. We can concentrate on backing off
only rare words by setting τu low.

The retrieved target phrases contain word classes that have to be expanded,
except for CSM source. We define a parameter Nt as the number of the member
words used to expand each class. The words are chosen by their relative frequency
within the class in order to avoid the paraphrasing with unusual words. Once the
classes are replaced with words, the decoder can use the target paraphrases as
possible translation options; e.g. the language model scores can be computed for
the hypothesis expansions.

We keep separate lists for the original phrase matches and the CSM phrase
matches, and also apply different observation histogram parameters to both types
of matching lists. This allows to control the effect of the paraphrasing. Other
pruning details in search are omitted in Algorithm 3.

4.3 Word Class Alignments

Section 2.1 provides motivation for an additional word alignment which is different
from the original word alignment. We introduce the word class alignment, which
is the translation correspondence between source and target classes. Each word
class represents a syntactic element or a semantic category, we therefore expect its
alignments to be linguistically meaningful.

To learn word class alignments, we first replace every word in the training corpus
with its word class. Afterwards, we train the statistical alignment models on the
word class corpus, using GIZA++. The output alignment is used in the following
two ways:

1. Merge with the original word alignment. It is a typical method to im-
prove the overall quality of word alignments, aiming to synthesize different
information in multiple word alignments. We use alignment merging heurist-
ics introduced by [Och & Ney 00]. The merged alignment is used to extract
phrase pairs and train all individual models.

2. Extract phrase pairs and train word class models. We can directly ex-
tract phrase pairs from word class alignments, hoping that their count statist-
ics are better suited for the wcTM (Section 4.1.1) or the CSM (Section 4.1.2).
These phrases are only used to score the wcTM or the CSM of the original
phrase pairs, i.e. they are not used as additional phrase table entries.

Note that the phrase pairs from word class alignments do not cover all
of the original phrase pairs. For the phrase pairs extracted from the original
word alignment, the wcTM or the CSM scores are computed based on the ori-
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ginal phrase counts as before. We add an extra penalty cost to such entries,
conversely promoting the models trained with word class alignments.
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Experiments

In this chapter, we present experimental results of our proposed methods: CSM,
CSM paraphrasing, and word class alignments. We also empirically analyze the
state-of-the-art word class models—wcTM, wcLM, and wcHRM—and their refine-
ments. In addition, we investigate the effect of word class estimation to the per-
formance of these methods. Before that, we describe the system, evaluation meth-
odology, and datasets where the experiments are conducted.

5.1 Test Environment

System

We implement the approaches in Chapter 4 inside the open source phrase-based
SMT toolkit Jane 2 [Wuebker & Huck+ 12], and use it for all of the translation
experiments.

As a baseline system, we train and integrate the following models into the log-
linear combination:

• Phrase translation model (Section 2.3): both directions

• Word-based lexicon model (Section 2.3): both directions

• Word penalty

• Phrase length penalty

• Distortion penalty (Section 2.3)

• Target side language model (Section 2.3): 4-gram

• Target side word class language model (Section 4.1.3) 7-gram, 100 classes,
without membership probability

• Hierarchical lexicalized reordering model [Galley & Manning 08]

The model weights are trained with MERT. Since MERT is a nondeterministic
algorithm, we run it three times and choose the single set of lambdas which gives
the best translation performance.
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Evaluation

The translation quality is measured by two automatic evaluation metrics: BLEU
[Papineni & Roukos+ 02] and TER [Snover & Dorr+ 06].

Datasets

We use German→English in-domain data of International Workshop on Spoken
Language Translation (IWSLT) 2012 Evaluation Campaign MT track1 [Cettolo &
Girardi+ 12] as the primary dataset for our experiments. It is extracted from
TED conference talk subtitles, and has a relatively small size (about 2.5M running
words on the training data). Table 5.1 shows the corpus statistics. We simulate
low-resource SMT scenarios with this data, which we expect our methods to be
especially useful.

We also test our methods on large-scale SMT tasks of Workshop on Statistical
Machine Translation (WMT), whose training data is composed of Europarl corpus
[Koehn 05], News Commentary corpus, and Common Crawl corpus. The first two
data are formal speeches, and the last is a collection of random web texts. Table
5.2 provides the corpus statistics of WMT 2014 English→German data2.

We use also WMT 2015 English→Czech3 data, where the corpus statistics are
shown in Table 5.3. Note that, in contrast to the IWSLT dataset, the morpho-
logically richer language is on the target side in the WMT tasks. As mentioned
in 2.3, rich morphology causes more sever sparsity problems. The models which
generalize the target side, e.g. wcLM or CSM source + target, are expected to be
more effective in these tasks.

5.2 Optimizing Word Classes

Our proposed methods are dependent on the given word class mapping, whose
estimation varies with several factors, e.g. parameters of the clustering algorithm.
Here, we perform a series of experiments to discover the relation between the word
class mapping and the word class models trained with them. We ultimately intend
to find the optimal class mapping which maximizes the performance of our methods.

As a first step, we optimize the word clustering without considering the purpose in
translation. We tune the clustering parameters to produce good values of common
clustering quality measures. Next, more importantly, we evaluate different word
class mappings with respect to the actual translation quality when they are used in

1https://wit3.fbk.eu/mt.php?release=2012-03
2http://www.statmt.org/wmt14/translation-task.html
3http://www.statmt.org/wmt15/translation-task.html
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German English

train Sentences 130K
Running Words 2.5M 2.5M

Vocabulary 71K 49K

dev† Sentences 883
Running Words 20K 21K

Vocabulary 4K 3K
OOVs (Rate) 776 (4%) 639 (3%)

test Sentences 1565
Running Words 32K 27K

Vocabulary 5K 5K
OOVs (Rate) 1068 (3%) 753 (2%)

Table 5.1: Corpus statistics of IWSLT 2012 German→English data.

English German

train Sentences 4M
Running Words 104M 105M

Vocabulary 648K 659K

news-test2011 Sentences 3003
Running Words 66K 81K

Vocabulary 14K 13K
OOVs (Rate) 2128 (3%) 1736 (2%)

news-test2012† Sentences 3003
Running Words 73K 81K

Vocabulary 10K 13K
OOVs (Rate) 1827 (2%) 1688 (2%)

news-test2013 Sentences 3000
Running Words 56K 70K

Vocabulary 13K 12K
OOVs (Rate) 1426 (2%) 1310 (2%)

Table 5.2: Corpus statistics of WMT 2014 English→German data.

†The development set used for tuning the model weights.
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English Czech

train Sentences 930K
Running Words 2.4M 2.1M

Vocabulary 161K 345K

news-test2012† Sentences 3003
Running Words 73K 65K

Vocabulary 10K 17K
OOVs (Rate) 1336 (2%) 2393 (4%)

news-test2013 Sentences 3000
Running Words 65K 57K

Vocabulary 9K 15K
OOVs (Rate) 1170 (2%) 2023 (4%)

news-test2014 Sentences 3003
Running Words 69K 60K

Vocabulary 9K 16K
OOVs (Rate) 1298 (2%) 2190 (4%)

Table 5.3: Corpus statistics of WMT 2015 English→Czech data.

our proposed models. This reveals the adequacy of the clustering measures in the
context of phrase-based SMT. We further examine how the following factors influ-
ence the translation quality: clustering iterations, initialization of the clustering,
the number of classes, and the clustering algorithm.

5.2.1 Clustering Measures

To assess the quality of a clustering, the most intuitive measure is the clustering ob-
jective function itself. The value indicates how well the output word class mapping
is optimized as we have intended. For the monolingual clustering, it is basically an
alternative n-gram model of the given corpus (Equation (3.8–3.9)). In this case, we
can transform the objective to perplexity :

PPL({eI1}) =
[∏

eI1

p(eI1)
]− 1∑

eI1
I

(5.1)

= exp


− 1∑

eI1
I

∑

eI1

log p(eI1)


 (5.2)

†The development set used for tuning the model weights.
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where Equation (3.8) is a part of it. Perplexity can be interpreted as the num-
ber of choices per word position. The lower value is preferred, which means the
model has less uncertainty for the given corpus. Since it is widely accepted as a
standard measure in NLP, we use perplexity to measure the quality of monolingual
clusterings.
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Figure 5.1: Perplexity curves over hill climbing phase iterations (top), ν (middle), and γ (bot-
tom) for monolingual clustering on the source side of WMT 2014 English→German
data. The top figure has individual curves for different values of #iter.

The exchange algorithms for word clustering have three parameters: #iter, ν,
and γ. Figure 5.1 shows the perplexity curves for tuning these parameters. For
three values of #iter (10, 20, 30), the difference in the final perplexity values is
negligible (around 1–2). Moreover, even if we set #iter = 30, the algorithm already
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converges at hill climbing iteration 21. We decide to use 10 for #iter, because we
cannot expect further meaningful change of the perplexity with a higher value. The
curves over ν and γ are nearly flat: the parameters seem not to affect the clustering
quality much. We choose ν = 2, and γ = 0.4, which are empirically acceptable
values from an extensive study on these parameters in [Och 95].

For bilingual clustering, it is impossible to use the perplexity criterion to evaluate
the word class mapping. The bilingual objective function covers the probability of
two languages, which does not fit to the definition of perplexity (Equation (5.2)).
Therefore, we directly use the log-likelihood value (Equation (3.15)) instead. We
put the negative sign in front of it for the consistency in the score comparison: the
lower is better.

We introduce other two metrics from previous literature on bilingual cluster-
ing. Class transition perplexity [Och 99] formulates the translation probability of
bilingual sentences in a similar way as perplexity:

CTPPL({(fJ1 , eI1)}) =


 ∏

(fJ1 ,e
I
1)

p(fJ1 |eI1)



− 1∑

fJ1
J

(5.3)

= exp


− 1∑

fJ1
J

∑

(fJ1 ,e
I
1)

log p(fJ1 |eI1)


 (5.4)

= exp


− 1∑

fJ1
J

∑

(fJ1 ,e
I
1)

J∑

j=1

log max
e
p(Cf (fj)|Ce(e))


 (5.5)

where the translation probability p(fJ1 |eI1) is modeled with the maximum probable
class transition to each source class, which is much simpler than Equation (3.17).
Average ε-mirror size [Wang & Lafferty+ 96] is defined not on the bilingual corpus
but on the class mappings themselves:

εMIRRORavg(Cf , Ce) =
1

Ke

∑

Ce∈Ce

∣∣∣{Cf | Cf ∈ Cf , p(Cf | Ce) > ε}
∣∣∣ (5.6)

The ε-mirror of a target class is the number of source classes which have the trans-
lation probability greater than ε. We set ε = 0.05 by default in the experiments,
following [Och 99]. Both measures gauge the variance of the translation probability
for each class. A small value means that the class translations are very focused and
that there is less ambiguity in predicting the target class given a source class.

The clustering measure curves for parameter tuning of bilingual one-step clus-
tering are given in Figure 5.2. The tendency of the curves is the same as the
monolingual case. #iter larger than 10 does not provide a noticeable improvement
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Figure 5.2: Clustering measure curves over hill climbing phase iterations (top), ν (middle), and
γ (bottom) for bilingual one-step clustering on WMT 2014 English→German data.
The top figure has negative log-likelihood curves for different values of #iter. The
middle and bottom figures have individual curves for different clustering measures.

in negative log-likelihood. There are no clear optima in the curves over ν and γ.
We use the same default values as the monolingual clustering for these parameters.
We have similar results for the bilingual two-step clustering (see Figure A.1).

The parameters are so far tuned on the given training corpus, while the actual
translation is conducted on other corpora. Suspecting that this might cause over-
fitting of the word class estimation to the training data, we calculate the clustering
measures also on the development and test data. Figure 5.3 (for monolingual clus-
tering) and 5.4 (for bilingual one-step clustering) show the measure values over the
clustering iterations. We can see that the values are changing over the iterations in
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Figure 5.3: Perplexity curves over the iterations for monolingual clustering on the source side
of IWSLT 2012 German→English train, dev, and test data.
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Figure 5.4: Clustering measure curves over the iterations for bilingual one-step clustering on
IWSLT 2012 German→English train, dev, and test data: negative log-likelihood
(top), class transition perlexity (middle), and average ε-mirror (bottom).
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5.2 Optimizing Word Classes

the same way for all three types of data: training, development, and test sets.
There is no clear point in the curves that the measure value becomes lower only for
the training data. Hence, the word clustering algorithms seem not to overfit to the
data used for the optimization. This makes our parameter tuning process—only on
the training data—convincing. The same curves for bilingual two-step clustering
are shown in Figure A.2.

5.2.2 Translation Measures

Clustering evaluation in the previous section is intrinsic; the evaluation process is
simple, but not explicitly related to the application of the clustering output. It is
based on the belief that a good value in a clustering measure is carried over to a
good performance in the translation usage, which is still vague.

For this reason, we also perform extrinsic evaluation of the word clusterings; the
quality of a clustering is measured by its performance in translation. We build
a complete translation system for each word class mapping, with which the word
class models are trained. Accordingly, we check how much translation quality is
improved by those word class models. We estimate various word class mappings
and repeat this procedure to find the optimal mapping in terms of the effect on
translation. BLEU is used for the translation metric in this procedure.

We carry out this optimization with regard to the following four factors:

1. Clustering iterations. In Section 5.2.1, it is shown that the number of
iterations is the most influential factor in the clustering measures. Unlike
other parameters, e.g. ν or γ, the measure values consistently change over
the iterations. We now verify its effect on the translation quality of word class
models.

As we run the clustering algorithm, we extract the intermediate class map-
pings for each iteration and train wcTM and CSM source + target with it.
For each iteration, the BLEU scores of the corresponding word class mod-
els are computed, which are given in Figure 5.3. First of all, when we tune
the model weights separately for each iteration, the performance of the word
class models is considerably fluctuating over the clustering iterations. We ob-
serve the maximum difference of 1.0 BLEU for the same model trained with
different word class mappings.

Next, we use a fixed set of model weights for all iterations—they are trained
only once—in order to focus only on the change of word class mapping. The
scores are nearly the same (± 0.1%) over the iterations. Surprisingly, the
word class models trained with the initial clustering, i.e. when the clustering
algorithm does not even start yet, show the same level of performance with
those trained with more optimized classes. This provides an important clue
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Figure 5.5: BLEU curves over the iterations for word class models on IWSLT 2012
German→English test data. The model weights are tuned separately for each
iteration (top), or fixed for every iteration (bottom). Dots indicate those iterations
which the translation is performed. 100 monolingual classes on both sides are used
to train wcTM and CSM source + target.

that the whole process of the word clustering has no meaning at least when
the output classes are used in phrase-based SMT—once we have an optimal
set of model weights. The BLEU curves for bilingual clustering, which have
the same tendency, are found in Section A.

2. Initialization of the clustering. If the clustering process has no significant
impact on the translation quality, we can hypothesize that the initialization
may dominate the clustering algorithm. We design five different initial clus-
tering methods:

• random: randomly assign words to classes

• top-frequent: top frequent words have their own classes for each, all other
words in the last class (used in the experiments of Figure 5.5)

• same-countsum: each class has the same (or as similar as possible) sum
of word counts
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5.2 Optimizing Word Classes

• same-#words: each class has the same (or as similar as possible) number
of words

• count-bins: each class represents a bin of total count range

Table 5.4 shows the translation results with the word class models trained with
these initializations—without running the clustering algorithm. The model
weights are the same for every initialization. The translation scores are not
changed much with different initial clusterings. We find that the initialization
method does not affect the translation performance of the word class models.
As an extreme case, random clustering is also a fine candidate for training
word class models.

dev test
BLEU TER BLEU TER

System Initialization [%] [%] [%] [%]

Baseline 30.3 50.0 28.3 52.2

+ wcTM random 30.3 49.9 29.1 51.4
top-frequent 30.8 48.9 29.2 50.8

same-countsum 30.5 49.6 29.2 51.3
same-#words 30.0 49.3 28.9 50.8

count-bins 30.7 49.0 29.3 50.8

+ CSMsrc+tgt random 30.7 49.0 29.0 51.0
top-frequent 30.8 48.7 29.0 50.8

same-countsum 30.7 48.9 29.0 50.9
same-#words 30.8 48.8 29.2 50.9

count-bins 30.8 48.7 29.1 50.8

Table 5.4: Translation results for wcTM and CSM source + target with various initializations
of the clustering. The experiments are done on IWSLT 2012 German→English data,
and 100 monolingual classes are used on both sides.

3. The number of classes. It determines the granularity of the classes, which
eventually adjusts the smoothing degree of the word class models. Table 5.5
gives the translation performance of wcTM and CSM source + target with
varying number of classes. We run the clustering algorithm with default para-
meter values until the end, and the model weights are fixed for all settings.
Similarly as before, increasing the number of classes is meaningless with re-
spect to the translation quality of the word class models.
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dev test
BLEU TER BLEU TER

System #classes [%] [%] [%] [%]

Baseline 30.3 50.0 28.3 52.2

+ wcTM 100 30.6 49.4 29.2 51.3
200 31.0 49.1 29.0 51.3
500 30.8 49.2 28.8 51.4

1000 30.4 49.1 29.0 51.3

+ CSMsrc+tgt 100 30.8 48.8 29.1 50.9
200 30.8 49.1 28.9 51.6
500 30.7 49.2 28.9 51.2

1000 30.8 49.0 29.2 51.2

Table 5.5: Translation results for wcTM and CSM source + target with different numbers of
classes. The experiments are done on IWSLT 2012 German→English data.

4. Clustering algorithm. The former three factors are optimized only with
monolingual classes. Here, we estimate word classes with the bilingual al-
gorithms and compare with the monolingual case (Table 5.6). Since we have
learned that the number of classes does not influence on the translation res-
ults, we simply set it to 100 for efficiency. Contrary to our expectation, bilin-
gual clustering algorithms have no advantage over monolingual clustering in
the application to the word class models of phrase-based SMT.

dev test
BLEU TER BLEU TER

System Clustering Algorithm [%] [%] [%] [%]

Baseline 30.3 50.0 28.3 52.2

+ wcTM monolingual 30.6 49.4 29.2 51.3
bilingual-1step 31.1 48.6 29.3 50.9
bilingual-2step 30.7 49.0 29.3 51.0

+ CSMsrc+tgt monolingual 30.8 48.8 29.1 50.9
bilingual-1step 30.6 49.3 29.1 51.1
bilingual-2step 30.9 49.0 29.0 51.0

Table 5.6: Translation results for wcTM and CSM source + target with different clustering
algorithms. The experiments are done on IWSLT 2012 German→English data, and
100 monolingual classes are used on both sides.
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In summary, the series of experiments show that the translation quality of the
word class models does not significantly depend on the structure of word class
mapping that we use to train them. No matter how we estimate the word class
mapping, i.e. choosing the clustering iterations, initialization methods, the number
of classes, and even the clustering algorithm itself, the word class models perform
equivalently. The more important factor is the log-linear model training to find
an optimal set of weights for the word class models. From this fact, we can save
a substantial effort of optimizing the word class estimation when using the word
class models in phrase-based SMT.

5.3 Word Class Models

In the previous section, we have already seen that wcTM and CSM source + target
produce an improvement over the baseline system. Here, we systematically eval-
uate all word class models in Section 4.1. First off, we compare a diverse sort of
CSM, which is our main contribution in the modeling problem, by their transla-
tion performance. Secondly, we measure the translation quality of wcTM, CSM,
and wcLM on three different SMT tasks. We also validate the usefulness of their
common refinement strategy: class membership probability. Finally, we combine
different word class models to check if they create a synergy effect on the translation
performance.

5.3.1 Comparison of CSM

CSM basically has four model types (CSM source, CSM source + target, CSM
target, CSM target + source), depending on the sides and order where the class
back-off is performed. They can be either linearly interpolated with the standard
phrase translation model or log-linearly integrated into the existing model com-
bination. In addition, CSMs can be categorized by its weighting schemes for each
back-off position. For each factor in building a CSM, we investigate which choice
is more effective in the translation quality.

Model Types and Integration

Table 5.7 shows the translation results for different types and integration methods
of CSMs. CSM source + target performs the best overall on both dev and test
among the four types. For the integration, the log-linear method yields better
translation quality for the other three types, while the linear method is preferred
for CSM source + target. We use linearly integrated CSM source + target—the
single best setting of Table 5.7—throughout all experiments afterwards.
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dev test
BLEU TER BLEU TER

System Integration [%] [%] [%] [%]

Baseline 30.3 50.0 28.3 52.2

+ CSMsrc linear 30.4 49.5 28.8 51.5
log-linear 30.5 49.7 29.0 51.6

+ CSMsrc+tgt linear 30.9 48.8 29.1 50.9
log-linear 30.8 48.6 28.9 50.6

+ CSMtgt linear 30.3 49.6 28.7 51.8
log-linear 30.4 49.4 29.0 51.4

+ CSMtgt+src linear 29.9 50.1 28.2 52.1
log-linear 30.7 48.9 29.1 50.9

Table 5.7: Translation results for various types of CSM on IWSLT 2012 German→English data.
100 monolingual classes are used on both sides.

Weighting Schemes

Table 5.8–5.10 gives the comparison between four CSM weighting schemes: equally
weighted, inverse unigram, inverse source replacement probability, and factoriza-
tion likelihood (Section 4.1.2). For IWSLT 2012 German→English data, no other
schemes are better than equal weighting. In WMT 2014 English→German task,
factorization likelihood shows the most promising result. We cannot clearly dis-
tinguish the performance difference between the weighting methods in WMT 2015
English→Czech data. As there is no single best scheme for all tasks, we can first
stick to the simplest method (equal weighting) as default.

dev test
BLEU TER BLEU TER

System Weighting [%] [%] [%] [%]

Baseline 30.3 50.0 28.3 52.2

+ CSMsrc+tgt equal 30.9 48.8 29.1 50.9
inverse-unigram 30.5 49.2 28.8 51.4

inverse-replacement 30.8 48.8 29.1 50.9
factorization 30.5 49.1 28.8 51.4

Table 5.8: Translation results for various weighting schemes of CSM on IWSLT 2012
German→English data. 100 monolingual classes are used on both sides.
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news-test2011 news-test2012 news-test2013
BLEU TER BLEU TER BLEU TER

System Weighting [%] [%] [%] [%] [%] [%]

Baseline 12.6 73.8 13.4 71.8 14.6 69.8

+ CSMsrc+tgt equal 12.6 73.4 13.5 71.4 14.8 69.4
inverse-unigram 12.7 73.4 13.6 71.1 14.9 69.3

inverse-replacement 12.6 73.2 13.6 71.2 14.9 69.0
factorization 13.0 72.6 13.8 70.6 15.2 68.5

Table 5.9: Translation results for various weighting schemes of CSM on WMT 2014
English→German data. 100 monolingual classes are used on both sides.

news-test2012 news-test2013 news-test2014
BLEU TER BLEU TER BLEU TER

System Weighting [%] [%] [%] [%] [%] [%]

Baseline 13.8 70.9 15.3 68.7 20.0 65.5

+ CSMsrc+tgt equal 13.7 70.9 15.4 68.6 20.4 65.1
inverse-unigram 13.6 70.8 15.4 68.6 20.5 65.1

inverse-replacement 13.7 70.7 15.5 68.2 20.5 64.9
factorization 13.7 70.8 15.4 68.6 20.5 65.1

Table 5.10: Translation results for various weighting schemes of CSM on WMT 2015
English→Czech data. 100 monolingual classes are used on both sides.

5.3.2 Refinements with Class Membership Probability

In Section 4.1 we have presented the integration of class membership probab-
ility into wcTM, CSM, and wcLM. Table 5.11–5.13 shows the translation per-
formance of each word class model and its class membership variant. In IWSLT
2012 German→English data, class membership probability slightly enhances wcLM
and CSM source + target. The performance of wcTM is substantially improved
(+0.4 BLEU and -1.6 TER on news-test2013) by this refinement. For WMT 2015
English→Czech data, we can see the improvement for all three word class models.

As supposed in Section 4.1.1, we claim that the improvements originate in that
rare words are poorly scored due to their weak class membership. Consequently, the
phrase pairs with the rare words are excluded from the translation candidates. This
is particularly effective for the WMT datasets where numerous garbage words are
included, e.g. special symbols, initials, or unusual compounds, from which many
improbable phrase pairs are extracted. Indeed, class membership probability shows
more distinct improvements in wcLM and wcTM on those datasets.

In all three datasets, the CSM achieves comparable performance to the wcTM.
It should be noted that CSM requires a smaller number of features than wcTM:
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dev test
BLEU TER BLEU TER

System [%] [%] [%] [%]

Baseline 30.3 50.0 28.3 52.2
- wcLM + wcLMmbs 30.2 49.2 28.5 51.5

+ wcTM 30.9 49.1 29.2 51.2
+ wcTMmbs 30.7 49.2 29.2 51.2

+ CSMsrc+tgt 30.9 48.8 29.1 50.9
+ CSMsrc+tgt:mbs 30.8 48.8 29.2 50.8

Table 5.11: Translation results for class membership refinements on IWSLT 2012
German→English data. 100 monolingual classes are used on both sides.

news-test2011 news-test2012 news-test2013
BLEU TER BLEU TER BLEU TER

System [%] [%] [%] [%] [%] [%]

Baseline 12.6 73.8 13.4 71.8 14.6 69.8
- wcLM + wcLMmbs 12.3 74.0 13.3 72.0 14.6 69.7

+ wcTM 12.8 73.3 13.6 71.2 14.8 69.4
+ wcTMmbs 13.1 71.6 13.5 69.9 15.2 67.8

+ CSMsrc+tgt 12.6 73.4 13.5 71.4 14.8 69.4
+ CSMsrc+tgt:mbs 12.7 73.3 13.5 71.3 14.8 69.2

Table 5.12: Translation results for class membership refinements on WMT 2014
English→German data. 100 monolingual classes are used on both sides.

news-test2012 news-test2013 news-test2014
BLEU TER BLEU TER BLEU TER

System [%] [%] [%] [%] [%] [%]

Baseline 13.8 70.9 15.3 68.7 20.0 65.5
- wcLM + wcLMmbs 13.4 70.2 15.4 67.8 20.4 64.4

+ wcTM 13.8 70.5 15.4 68.2 20.4 64.9
+ wcTMmbs 13.7 69.9 15.6 67.4 20.7 64.2

+ CSMsrc+tgt 13.7 70.9 15.4 68.6 20.4 65.1
+ CSMsrc+tgt:mbs 13.7 70.8 15.4 68.5 20.5 64.9

Table 5.13: Translation results for class membership refinements on WMT 2015
English→Czech data. 100 monolingual classes are used on both sides.
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two for CSM (the normal and the inverse direction) and four for wcTM (hwcPhr and
hwcLex, the normal and the inverse direction for each). This is a crucial advantage
for training the model weights with MERT, since the optimization becomes unstable
for large amount of models. Compared to wcTM, CSM offers extra room for other
additional models to be combined without degrading the MERT procedure.

Notes on wcLM and Class Membership Probability

With the help of class membership probability, wcLM can be factorized over words
instead of word classes (Equation 4.15). This makes it possible to compare its
perplexity with that of a conventional language model defined on a word vocabulary.
Table 5.14 gives the perplexity values for three kinds of target language models:
the normal word language model (LM), wcLM with class membership probability
(wcLMmbs), and the linear interpolation between them. It is hardly surprising that
wcLMmbs has worse perplexity than LM, since it is trained on a coarser vocabulary.
However, when it is combined with LM, the perplexity eventually decreases. This
provides another solid ground for the usage of wcLM along with LM.

Perplexity

Dataset LM wcLMmbs LM + wcLMmbs

IWSLT 2012 German→English 105.43 263.27 104.08
WMT 2014 English→German 636.67 1206.71 510.83
WMT 2015 English→Czech 624.88 1851.37 500.72

Table 5.14: Perplexity values for the target word language model and the wcLM (equipped
with class membership probability) on different datasets. 100 monolingual classes
are used.

We perform an additional set of experiments for wcLM with varying number of
classes. The corresponding change of the perplexity and the translation perform-
ance is shown in Table 5.15.

#classes Perplexity BLEU [%]

100 263.27 28.5
200 231.70 28.4
500 193.58 29.1

1000 178.49 29.2

Table 5.15: Perplexity and translation results for wcLMmbs with varying number of classes.
BLEU scores are measured on IWSLT 2012 German→English test, when the cor-
responding wcLM replaces that of the baseline.
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As expected, the perplexity value gets lower by increasing the number of classes,
which means we use more fine-grained vocabulary to train the wcLM. A notable
result is that its performance in translation also improves over the number of classes.
This is utterly opposed to the result of Section 5.2.2, where the number of classes
does not affect the translation quality of wcTM or CSM.

5.3.3 Model Combinations

Since each word class model individually accomplishes a decent translation quality,
we consider the combination of different word class models, expecting to boost
the performance. Tables 5.16 shows the translation results of combined word class
models on IWSLT 2012 German→English task. When wcTM and CSM are used
together, we observe a substantial improvement on dev—where the model weights
are optimized—but it does not carry over to test. It is difficult to conclude that
the combination of different translation models is generally helpful.

On the other hand, wcHRM clearly generates a synergy with wcTM, producing
the best result on this dataset so far. wcHRM delivers reordering information
which is completely different from wcTM or CSM, thus the combination with the
translation models enriches the system.

dev test
BLEU TER BLEU TER

System [%] [%] [%] [%]

Baseline 30.3 50.0 28.3 52.2

+ wcTMmbs 30.7 49.2 29.2 51.2

+ CSMsrc:mbs 31.1 48.7 29.2 51.2
+ CSMsrc+tgt:mbs 30.6 49.1 29.1 51.2
+ CSMsrc:mbs + CSMsrc+tgt:mbs 31.2 48.6 29.2 50.8

+ wcHRM 31.5 48.1 29.5 50.6

Table 5.16: Translation results for the combination of word class models on IWSLT 2012
German→English data. The indentation level in System column indicates that
the model is added on top of the above setting. 100 monolingual classes are used
on both sides.

5.3.4 Translation Examples

We provide a couple of translation outputs, which are actually enhanced by the
word class models, in Table 5.17.
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Source unsere Zeit Schriften werden von Millionen gelesen .

Reference our magazines are read by millions .

Baseline our magazines are killed by millions .

+ CSMsrc+tgt our magazines will read from millions .

Source viele von ihnen sind von Gesichtern verdeckt usw.

Reference so many of them are occluded by faces , and so on .

Baseline many of them are of faces , and so on .

+ CSMsrc+tgt many of them are covered by faces , and so on .

Source ich bekomme im wahren Leben dieses Feed back nicht .

Reference I don 't get that feedback in real life .

Baseline I 'm going to get in the real life of this feedback .

+ CSMsrc+tgt I don 't get that feedback in real life .

Table 5.17: Translation examples of IWSLT 2012 German→English data, where CSM source
+ target improves the quality.

The first example shows how an unlikely translation is demoted by CSM. The
baseline translation is nonsense due to the word “killed”, which has nothing to
do with the source word “gelesen”. The translation rule between them is learned
from an inaccurate word alignment. If we back off to the word classes, “gelesen” is
not to be translated to the class of “killed”, i.e. any related word of “killed”. By
giving a low score to “killed”, CSM selects the correct target translation “read”.

The second example shows how a low-score translation rule is promoted by the
word class smoothing. The baseline system fails to find a proper translation for
“verdeckt”. CSM cannot translate it to the word “occluded” as the reference,
but to a semantically similar word “covered”. The two target words are in the
same class, so the word class smoothing gives a high score to the translation from
“verdeckt” to the class of “covered”.

In the last example, CSM behaves in a similar way as in the first example. It
devalues the phrase “’m going to” and encourages “don ’t” for the translation of
“nicht”. As a result, its translation output is the same as the reference sentence.

5.4 Word Class Decoding

The paraphrasing method for phrase-based SMT decoding is proposed in Section
4.2. We can borrow the class back-off phrase pairs from CSMs and use them as
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dev test

BLEU TER #CSM BLEU TER #CSM
System τu Nh [%] [%] [%] [%]

Baseline 30.3 50.0 28.3 52.2

wcDec max 500 29.2 50.5 27.9 52.1

wcDec (w/o OOV) max 500 30.6 49.2 49 29.2 51.0 117
1000 200 30.4 49.4 0 28.7 51.7 1

Table 5.18: Translation results for the word class decoding (wcDec) on IWSLT 2012
German→English data. CSM source model is used for the paraphrasing. 2000
monolingual classes are used for wcDec, and 100 monolingual classes for wcDec
w/o OOV. The number of CSM phrase pairs actually used in the translation
(#CSM) is also reported.

alternative translation options. Here, we show only preliminary experiments using
CSM source on IWSLT 2012 (Table 5.18) due to the time limit.

To handle OOV with word classes, we estimate the word class mapping from a
huge collection of German monolingual data, provided by WMT 2014 translation
task. Setting parameter τu to the maximum possible value, we let every source word
considered in the paraphrasing procedure. Unfortunately, the word class decoding
shows an inferior performance than the baseline decoding. We attribute this result
to the excessively large vocabulary of the monolingual data used for the clustering.
A large vocabulary leads to too many paraphrases, which might make the search
space too complicated. Although we set the number of classes relatively large (=
2000), each class should still cover lots of words that are not closely related to each
other. This fact can degrade the overall quality of the paraphrases.

As a next step, we exclude OOV words from the translatable input in the word
class decoding. In this case, we may learn the word classes only from the given
bilingual data, which produces more compact and meaningful classes. We obtain
a fine improvement (+0.9 BLEU and -1.2 TER on test) over the baseline by per-
forming the paraphrasing except for OOV words. We decrease τu and Nh to reduce
the search space, but the translation quality becomes worse and almost no CSM
phrase pairs are actually used.

Translation Examples

Table 5.19 shows some translation examples of the word class decoding. In the first
example, the baseline system produces a weird translation, where an unnecessary
passive voice confuses the sentence structure. Using the word class decoding, we
obtain a grammatically correct translation which is very similar to the reference.
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Source wir haben die Biologie digitalisiert ...

Reference we 've been digitizing biology ...
Baseline we ’ve got the biology is being digitized

wcDec we have digitized biology

Source ... mit der wir diese kleinen Stücke zusammensetzen und

die Fehler korrigieren konnten .

Reference ... for putting these little pieces together and

correct all the errors .

Baseline ... with which we have these little pieces , and the

correct mistakes .

wcDec ... with which we have these little pieces together and

to correct the mistakes .

Table 5.19: Translation examples of IWSLT 2012 German→English data, where the word class
decoding improves the quality. Underlined is where a CSM phrase pair is used.

CSM phrase pair $C74 Biologie → biology is used here, which is not directly
related to the improved part in the sentence. We suppose that a CSM phrase pair
adjust the search space in such a way that the decoder more easily finds the correct
translation and reordering of the neighboring phrase.

We can observe a similar effect in the second example. The baseline translation
distorts the intended meaning by putting an article “the” in the wrong place. CSM
phrase pair $C74 Fehler→ the mistakes locates the article in the right position,
making the translation closer in meaning to the reference.

In the given examples, the parts translated with CSM phrase pairs can also be
translated with original phrase pairs; the rules die Biologie → biology (for the
first example) and die Fehler → the mistakes (for the second example) already
exist in the original phrase table. Considering that a frequent word (an article) is
backed off to its class, this is predictable. Contrary to our expectation, the word
class decoding here improves the translation quality not by providing diversity in
translation options, but by rearranging the search space of the existing translation
options.

5.5 Word Class Alignments

We have presented the training and usages of word class alignments in Section 4.3.
Here, we learn the word class alignments on IWSLT 2012 German→English data
and evaluate their effect on the translation quality.
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dev test
BLEU TER BLEU TER

System Alignment [%] [%] [%] [%]

Baseline original 30.3 50.0 28.3 52.2
merged 29.6 50.4 27.7 52.8

+ wcTM original 30.9 49.1 29.2 51.2
merged 29.9 50.1 27.7 52.4

+ CSMsrc original 30.5 49.7 29.0 51.6
merged 29.7 49.9 27.9 52.4

+ CSMsrc+tgt original 30.8 48.9 28.8 51.0
merged 29.2 50.8 27.3 53.1

Table 5.20: Translation results with the merged alignment between the original and word class
alignments on IWSLT 2012 German→English data. 100 monolingual classes are
used on both sides.

dev test
BLEU TER BLEU TER

System Alignment [%] [%] [%] [%]

Baseline original 30.3 50.0 28.3 52.2
merged 30.2 49.8 28.4 51.9

+ wcTM original 30.6 49.4 29.2 51.3
merged 29.9 50.1 28.2 51.9

+ CSMsrc original 30.5 49.7 29.0 51.6
merged 29.5 50.2 28.1 52.1

+ CSMsrc+tgt original 30.8 48.8 29.1 50.9
merged 30.1 50.2 28.2 52.2

Table 5.21: Translation results with the merged alignment between the original and word class
alignments on IWSLT 2012 German→English data. 1000 monolingual classes are
used on both sides.

In Table 5.20, we first present the performance change in the baseline models and
the word class models, when the word class alignment is merged with the original
alignment. The results show that the merged alignment causes a clear degradation
of the translation quality in all settings. Figure 5.6 shows an example of incorrect
word class alignments and their effect on the merged alignment.
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(b) Word class
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(c) Merged

Figure 5.6: A German→English bilingual sentence pair with different word alignments: (a) the
original alignment, (b) word class alignment, and (c) the merged alignment between
the two. German words “sie”, “mich”, and “erweitern” are aligned to the
irrelevant English words in (b) and (c). Taken from IWSLT 2012 German→English
data.

We argue two reasons for this performance loss. Firstly, too many words are
assigned to each class, making the classes and their translation counts linguistically
meaningless. Secondly, the merging heuristic is not intelligent enough to capture
only the beneficial information of both alignments. From the first point, we increase
the number of classes on both sides from 100 to 1000 and run the same set of
experiments (Table 5.21). The results are slightly better (+0.2–0.7 BLEU) than
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the case of 100 classes but still far worse than using the original alignment. We can
suppose that much larger number of classes, e.g. 10000 or 20000, are necessary to
make this approach effective. In such cases, however, the word class estimation and
the word alignment training become extremely inefficient, which is not attractive.
Addressing the second reason is out of the scope of this work.

We now turn to another method of using word class alignments: training word
class models with them. As explained in 4.3, we need penalty costs for the word
class model scores computed with the original phrase counts. In this experiment,
we manually set a fixed penalty to all such cases according to the score statistics of
the word class models. Figure 5.7 shows an exemplary distribution of a word class
model for our experiments. The scores are in negative log scale, so the lower means
better. The distribution follows the similar structure, regardless of the alignment we
use to learn the model. We conclude that +5 is a reasonable value for the penalty;
more than half of the scores from the original alignment are eventually ignored in
the translation, but some very decent scores of them remain still competitive with
the scores from the word class alignment.
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Figure 5.7: Histogram of wcTM source-to-target scores on IWSLT 2012 German→English
data, trained with the original word alignment. 100 monolingual classes are used
on both sides.

Table 5.22 and 5.23 show the results with 100 classes and 1000 classes, respect-
ively. For both cases, word class alignments enhance the performance of the word
class models. More fine-grained classes are beneficial for wcTM and CSM source,
but still do not make the models better than those from the original training.
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dev test
BLEU TER BLEU TER

System Alignment [%] [%] [%] [%]

Baseline original 30.3 50.0 28.3 52.2

+ wcTM original 30.6 49.4 29.2 51.3
word class 30.8 49.2 28.7 51.5

+ CSMsrc original 30.5 49.7 29.0 51.6
word class 30.1 49.9 28.3 51.9

+ CSMsrc+tgt original 30.8 48.8 29.1 50.9
word class 30.4 49.5 28.4 51.7

Table 5.22: Translation results for the word class models trained with the word class alignment
on IWSLT 2012 German→English data. 100 monolingual classes are used on both
sides.

dev test
BLEU TER BLEU TER

System Alignment [%] [%] [%] [%]

Baseline original 30.3 50.0 28.3 52.2

+ wcTM original 30.6 49.4 29.2 51.3
word class 30.9 49.1 29.0 51.4

+ CSMsrc original 30.5 49.7 29.0 51.6
word class 30.7 49.3 29.0 51.4

+ CSMsrc+tgt original 30.8 48.8 29.1 50.9
word class 30.0 50.2 28.4 52.1

Table 5.23: Translation results for the word class models trained with the word class alignment
on IWSLT 2012 German→English data. 1000 monolingual classes are used on both
sides.
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Chapter 6

Conclusion

6.1 Summary

In this thesis work, we have investigated the usages of word classes in modeling,
decoding, and word alignment problems of phrase-based SMT.

For the modeling, we have developed a novel smoothing method for the standard
phrase translation model called CSM. It performs the back-off from each word in a
phrase to its corresponding word class, which is done one word at a time and take
the average with various weighting schemes. On three different translation tasks
(IWSLT 2012 German→English, WMT 2014 English→German, and WMT 2015
English→Czech), CSM improves the translation quality over the strong baseline by
up to +0.9 BLEU and -1.4 TER. This is at least the equal level of performance to
the state-of-the-art word class model (wcTM) with a smaller number of features.

In addition, we have validated the utility of class membership probability in the
word class models. By reformulating with the class membership probability, the
translation performance of CSM, wcTM, and wcLM is enhanced by up to +0.4
BLEU and -1.6 TER in our experiments.

Furthermore, we have extensively compared various word class mappings with
respect to intrinsic clustering measures and extrinsic performance in the word class
models. Our results show that the performance of wcTM and CSM is not signi-
ficantly affected by the word class mapping they are trained with, regardless of
clustering parameters, initial clustering, and even the clustering algorithm itself for
its estimation. We show that the performance is greatly dependent on the log-linear
training of the model weights.

On the other hand, we have verified that wcLM can be further improved by
increasing the number of classes. On IWSLT 2012 German→English data, the
translation quality of wcLM is enhanced by +0.7 BLEU when the number of classes
are changed from 100 to 1000.

When different word class models are combined, wcTM and CSM do not show a
synergy effect on the translation performance. We show that wcHRM is effective
to be used together with the translation models.
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For the decoding, we have proposed a class-based paraphrasing method to provide
additional translation options, using the phrase pairs from CSM. We have integ-
rated this procedure to the standard phrase-based SMT decoder. Our modified
decoder shows an improvement by up to +0.9 BLEU and -1.2 TER on IWSLT 2012
German→English task.

For the word alignment problem, we have presented a simple method to train
word alignments from a word class corpus. We have applied the word class align-
ment to train the standard phrase-based SMT models and also the word class mod-
els. Unfortunately, the word class alignments do not show a superior performance
to the original word alignments in all of our experiments.

6.2 Future Work

CSM and wcTM are both designed within the phrase level, which cannot capture the
context beyond the phrase boundaries. There may be a limit in their performance
gain by only the refinements and combinations. As a next step, we may develop
a word class model which provides useful information about longer contexts. For
this purpose, we can use word class sequences as inputs to neural networks, which
are successfully applied to SMT recently for modeling sentence-level contexts.

We have found that the performance of wcLM largely depends on the word class
estimation. It would be meaningful to compare various word classes for the usage
in wcLM, similar to Section 5.2. Furthermore, we may interpolate many different
wcLMs each of which is trained with different word class mappings.

Regarding the word class decoding, a number of empirical evaluations are still
needed. The paraphrasing with CSM target direction models is to be tested, and
there should be a further study on the parameters τu and Nh. Since the modified
decoder does not help with OOV translations in our experiments, we need to find an
effective refinement for OOV handling. For example, we may find another method
to learn a useful class mapping for OOV words—not just employing a massive
monolingual dataset.
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Appendix A

Optimizing Bilingual Classes
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Figure A.1: Clustering measure curves over hill climbing phase iterations (top), ν (middle), and
γ (bottom) for bilingual two-step clustering on WMT 2014 English→German data.
The top figure has negative log-likelihood curves for different values of #iter. The
middle and bottom figures have individual curves for different clustering measures.
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Figure A.2: Clustering measure curves over the iterations for bilingual two-step clustering on
IWSLT 2012 German→English train, dev, and test data: negative log-likelihood
(top), class transition perlexity (middle), and average ε-mirror (bottom).
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Figure A.3: BLEU curves over the iterations for word class models on IWSLT 2012
German→English test data. The model weights are tuned separately for each
iteration (top), or fixed for every iteration (bottom). Dots indicate those itera-
tions which the translation is performed. 100 bilingual one-step classes on both
sides are used to train wcTM and CSM source + target.
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Figure A.4: BLEU curves over the iterations for word class models on IWSLT 2012
German→English test data. The model weights are tuned separately for each
iteration (top), or fixed for every iteration (bottom). Dots indicate those itera-
tions which the translation is performed. 100 bilingual two-step classes on both
sides are used to train wcTM and CSM source + target.
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