Unsupervised Training for Large Vocabulary Translation Using Sparse Lexicon and Word Classes

HIT Lehrstuhl Informatik 6 Human Language Technology and Pattern Recognition **RNTHAACHE** UNIVERSIT

Yunsu Kim, Julian Schamper, Hermann Ney Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Aachen, Germany

Unsupervised Machine Translation

- Given: two **monolingual corpora** on source/target (not sentence-aligned)
 - ► No parallel corpora, no seed lexicon
 - Target language model (LM): trained beforehand
- To train: word lexicon model p(f|e)
- Task assumption: 1-1 monotone word alignment

Source words f_1^N : f_1 f_2 ... f_n ... f_N ||||||||||Target words e_1^N : e_1 e_2 ... e_n ... e_N

Computationally infeasible to consider phrases and reorderings
 Data preparation / Task setup

Initialization Using Word Classes

- Problem 2: harsh pruning is inevitable for large hypothesis lattices
 - EM algorithm does not converge properly
 - ► How can we stabilize the training?
- Solution: learn an initial lexicon on word class vocabulary
 - 1. Estimate word-class mappings on both sides $(\mathcal{C}_{src}, \mathcal{C}_{tgt})$
 - Exchange algorithm, e.g. mkcls tool
 - 2. Map each word in the corpus to its class

 $f\mapsto \mathcal{C}_{ ext{src}}(f) \qquad e\mapsto \mathcal{C}_{ ext{tgt}}(e)$

3. Train a class-to-class full lexicon p_c (using a target class LM) 4. Convert p_c to a word lexicon score by mapping each class back to its member words (not normalized yet)

Learn word alignments of a parallel corpus
 Reorder/Drop source words to make the alignment 1-1 monotonic
 Divide the corpus into two parts:

	Source	Target
1st part	Training data	Reference (only for
		evaluation)
2nd part	_	LM training data

Baseline Framework

• Hidden Markov model (HMM)

$$p(e_1^N,f_1^N) \ = \ \prod_{n=1}^N \underbrace{p(e_n|e_{n-1})}_{ ext{fixed}} \ \underbrace{p(f_n|e_n; heta)}_{= heta_{f|e}}$$

• Training: expectation-maximization (EM) algorithm

$$L(heta) \;=\; \sum_{e_1^N} \; p(e_1^N, f_1^N)$$

- ► Latent variable: target sentence e_1^N
- E-step: compute posteriors $p_n(e|f_1^N)$ (forward-backward algorithm)

 $orall (e,f) \ \ heta_{f|e} := p_c(\mathcal{C}_{ ext{src}}(f)| \ \mathcal{C}_{ ext{tgt}}(e))$

- 5. Apply the thresholding and renormalization to 4 (sparse lexicon)
- ► Class vocabulary ≪ word vocabulary: marginal increase in memory/time
- Results on EUTRANS es-en (pruning with beam size 10)

	Initialization	1	Accuracy [%]
	Uniform		63.7
	#Classes	Class LM	
	25	2-gram	67.4
\\/ard	50	2-gram	69.1
VVOrd	100	2-gram	72.1
Classes	50	3-gram	76.0
	50	4-gram	76.2

More performance gain with:

- larger number of classes
- better class LMs

- M-step: update lexicon table $\theta_{f|e}$
- This work: first attempt at **100k-vocabulary** scenarios

Sparse Lexicon

- Problem 1: full table $heta_{f|e}$ is too large to fit in memory
 - How can we represent the lexicon efficiently?
- Solution: filter out unlikely entries for each iteration

1. Select the lexicon entries with a high probability (threshold au)

 $\mathcal{F}(e) = \{f \, | \, \hat{ heta}_{f|e} \geq au \}$

2. Renormalize over the selected entries, setting other entries to zero

$$p_{\mathsf{sp}}(f|e) = egin{cases} egin{aligned} \hat{ heta}_{f|e} \ egin{aligned} & ext{if } f \in \mathcal{F}(e) \ egin{aligned} & ext{if } f \in \mathcal{F}(e) \ & ext{otherwise} \ \end{aligned}$$
 if $f \in \mathcal{F}(e)$ otherwise

3. Smooth with a uniform back-off model $p_{
m bo}(f)$

 $p(f|e) = \lambda \cdot p_{\scriptscriptstyle{\mathsf{sp}}}(f|e) + (1-\lambda) \cdot p_{\scriptscriptstyle{\mathsf{bo}}}(f)$

Large Vocabulary Experiments

Corpus statistics

		Source	Target
Task		(Input)	(LM)
Europarl	Running Words	2.7M	42.9M
es-en	Vocabulary	32k	96k
IWSLT 2014	Running Words	2.8M	13.7M
ro-en	Vocabulary	99 k	114k

 Results 				
	Accuracy [%]			
	Task	Supervised	Unsupervised	Memory [%]
	es-en	77.5	54.2	0.06
	ro-en	72.3	32.2	0.03

- ► Significantly high accuracy with < 0.1% memory
- Conventional decipherment methods are not applicable

- Enforces multinomial sparsity throughout the training
- Reduces the model size on the fly
- Results on EUTRANS es-en (no pruning)

Lexicon	au	Accuracy [%]	Memory [%]
Full	_	70.2	100
	0.005	69.0	2.7
Sparco	0.002	72.3	5.1
Sharze	0.0001	70.1	9.1

- \blacktriangleright Outperforms full table by setting $\pmb{\tau}$ properly
- Greatly reduces the memory usage

Conclusion and Outlook

- First promising results in 100k-vocabulary unsupervised machine translation
 Sparse lexicon = no memory bottleneck + effective model structure
 Initialization using word classes = robust training + performance boost
 Outlook
 - Incorporating local reorderings
 - Neural network lexicon models
 - Using more training data and more powerful LMs

Human Language Technology and Pattern Recognition, RWTH Aachen University, Aachen, Germany

Email: <surname>@cs.rwth-aachen.de

WWW: http://www.hltpr.rwth-aachen.de