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Unsupervised Machine Translation

• Given: two monolingual corpora on source/target (not sentence-aligned)

I No parallel corpora, no seed lexicon
I Target language model (LM): trained beforehand

• To train: word lexicon model p(f |e)
• Task assumption: 1-1 monotone word alignment

Source words fN1 : f1 f2 ... fn ... fN
| | | | | |

Target words eN1 : e1 e2 ... en ... eN

I Computationally infeasible to consider phrases and reorderings

• Data preparation / Task setup

1. Learn word alignments of a parallel corpus

2. Reorder/Drop source words to make the alignment 1-1 monotonic

3. Divide the corpus into two parts:

Source Target

1st part Training data Reference (only for

evaluation)

2nd part - LM training data

Baseline Framework

• Hidden Markov model (HMM)

p(eN1 , f
N
1 ) =

N∏
n=1

p(en|en−1)︸ ︷︷ ︸
fixed

p(fn|en; θ)︸ ︷︷ ︸
=θf |e

• Training: expectation-maximization (EM) algorithm

L(θ) =
∑
eN1

p(eN1 , f
N
1 )

I Latent variable: target sentence eN1
I E-step: compute posteriors pn(e|fN1 ) (forward-backward algorithm)
I M-step: update lexicon table θf |e

• This work: first attempt at 100k-vocabulary scenarios

Sparse Lexicon

• Problem 1: full table θf |e is too large to fit in memory

I How can we represent the lexicon efficiently?

• Solution: filter out unlikely entries for each iteration

1. Select the lexicon entries with a high probability (threshold τ )

F(e) = {f | θ̂f |e ≥ τ}
2. Renormalize over the selected entries, setting other entries to zero

psp(f |e) =


θ̂f |e∑

f ′∈F(e)

θ̂f ′|e
if f ∈ F(e)

0 otherwise

3. Smooth with a uniform back-off model pbo(f)

p(f |e) = λ · psp(f |e) + (1− λ) · pbo(f)

I Enforces multinomial sparsity throughout the training
I Reduces the model size on the fly

• Results on EuTrans es-en (no pruning)

Lexicon τ Accuracy [%] Memory [%]

Full - 70.2 100

Sparse

0.005 69.0 2.7

0.002 72.3 5.1

0.0001 70.1 9.1

I Outperforms full table by setting τ properly
I Greatly reduces the memory usage

Initialization Using Word Classes

• Problem 2: harsh pruning is inevitable for large hypothesis lattices

I EM algorithm does not converge properly
I How can we stabilize the training?

• Solution: learn an initial lexicon on word class vocabulary

1. Estimate word-class mappings on both sides (Csrc, Ctgt)

- Exchange algorithm, e.g. mkcls tool

2. Map each word in the corpus to its class

f 7→ Csrc(f) e 7→ Ctgt(e)

3. Train a class-to-class full lexicon pc (using a target class LM)

4. Convert pc to a word lexicon score by mapping each class back to its

member words (not normalized yet)

∀(e, f) θf |e := pc(Csrc(f)| Ctgt(e))

5. Apply the thresholding and renormalization to 4 (sparse lexicon)

I Class vocabulary � word vocabulary: marginal increase in memory/time

• Results on EuTrans es-en (pruning with beam size 10)

Initialization Accuracy [%]

Uniform 63.7

#Classes Class LM

Word

Classes

25 2-gram 67.4

50 2-gram 69.1

100 2-gram 72.1

50 3-gram 76.0

50 4-gram 76.2

I More performance gain with:

- larger number of classes
- better class LMs

Large Vocabulary Experiments

• Corpus statistics

Source Target

Task (Input) (LM)

Europarl Running Words 2.7M 42.9M

es-en Vocabulary 32k 96k

IWSLT 2014 Running Words 2.8M 13.7M

ro-en Vocabulary 99k 114k

• Results

Accuracy [%]

Task Supervised Unsupervised Memory [%]

es-en 77.5 54.2 0.06

ro-en 72.3 32.2 0.03

I Significantly high accuracy with < 0.1% memory
I Conventional decipherment methods are not applicable

Conclusion and Outlook

• First promising results in 100k-vocabulary unsupervised machine translation

I Sparse lexicon = no memory bottleneck + effective model structure
I Initialization using word classes = robust training + performance boost

• Outlook

I Incorporating local reorderings
I Neural network lexicon models
I Using more training data and more powerful LMs
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