

Improving Unsupervised Word-by-Word Translation Using Language Model and Denoising Autoencoder

Yunsu Kim, Jiahui Geng, Hermann Ney

kim@cs.rwth-aachen.de

EMNLP 2018 November 2, 2018

Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6 Computer Science Department RWTH Aachen University, Germany

Machine translation (MT) requires lots of parallel data

- Especially for neural models [Koehn & Knowles 17]
- Small or no parallel data for many language pairs

Unsupervised MT: Train only with monolingual data

- [Artetxe & Labaka⁺ 18], [Lample & Denoyer⁺ 18]
- Iterative back-translation of both translation directions
 - Long training time (e.g. 1-3 weeks)
- Model shared for both translation directions but separate training data
 Considerable effort to implement

Can we build an unsupervised machine translation system quickly & simply?

Our Unsupervised MT System

Combine the ideas from

- Classic word-based models
- Modern neural sequence-to-sequence model

Minimal implementation & Quick training (1-2 days)

Outperforms [Artetxe & Labaka⁺ 18], [Lample & Denoyer⁺ 18]

Word Lexicon: Cross-lingual Word Embedding

Monolingual word embedding

- Skip-gram, CBOW
- Individually learned for source and target

Cross-lingual word embedding

- Linear mapping: source \rightarrow target
- Shared embedding space
- Arithmetic operations possible between source and target words

RWITHAACHEN UNIVERSITY

Unsupervised learning of cross-lingual mapping

- 1. Initialization: adversarial training [Conneau & Lample⁺ 18]
- 2. Training: minimum squared error (MSE)

$$\hat{W} = \mathop{\mathrm{argmin}}_{W} \left\{ \sum_{(f,e)\in D} \|Wf^{\mathsf{emb}} - e^{\mathsf{emb}}\|
ight\}$$

Dictionary D: mutual nearest neighbors

3. Repeat dictionary induction and MSE training [Artetxe & Labaka⁺ 17]

Word translation = Nearest neighbor search

$$\hat{e}(f) = \operatorname*{argmin}_{e} \left\{ d(f,e)
ight\}$$

▶ d(f, e): cosine similarity with hub penalty [Conneau & Lample⁺ 18]

Word-by-word translation does not consider context

- And most literature on cross-lingual word embedding evaluate only on word translations!
- Ignored so far: behavior of cross-lingual neighbor words within a context

Beam search with language model (LM)

$$S(e; f, h) = \lambda_{\text{emb}} \log q(f, e) + \lambda_{\text{LM}} \log p(e|h)$$

- ▶ $q(f, e) \in [0, 1]$: linearly scaled cosine similarity
- e = k-nearest neighbors
- Context-aware lexical choices

Denoising Autoencoder

Cross-lingual word embedding + LM = $f_1^J
ightarrow ilde{e}_1^J$

- Still one target word per source word
- Reordering is not considered

Denoising: noisy target sentence \rightarrow clean target sentence

- Neural sequence-to-sequence autoencoder
- Can be trained only with target monolingual data

$$L(E) = -\sum_{e_1^I \in E} \log p(e_1^I \,|\, \textbf{noise}(e_1^I))$$

Input noise(e^I₁): target sentence with artificial noise
 Simulate errors in word-by-word translations
 Output e^I₁: target sentence (original)

Insertion Noise

Case 1: multiple source words \rightarrow a single target word

Insertion noise: insert a word between original words [This work]

- \triangleright Randomly with a probability $p_{\rm ins}$ at each position
- \triangleright Only V_{ins} frequent words are inserted, e.g. articles, prepositions
- Denoiser learns to delete such words

Deletion Noise

Case 2: a single source word \rightarrow multiple target words

Deletion noise: delete words from the original sentence [Hill & Cho⁺ 16]
 randomly with a probability p_{del} at each position

Denoiser learns to insert such words

Permutation Noise

Case 3: target hypothesis words should be reordered

Permutation noise: permute original word positions [Hill & Cho⁺ 16]
 randomly within a limited distance d_{per}: maintain general monotonicity
 Denoiser learns to reorder such words

Experimental Setup

Training data: WMT News Crawl monolingual data

- ► English: 100M sentences
- ► German: 100M sentences
- ► French: 42M sentences

Test sets: WMT News translation task

- **German** \leftrightarrow **English**: newstest2016
- ► French \leftrightarrow English: newstest2014

Experimental Setup

Cross-lingual word embedding

Discriminator input and dictionary induction: 100k frequent words

LM: 5-gram with modified Kneser-Ney smoothing

Denoising autoencoder: 6-layer Transformer encoder/decoder

► 50k frequent words + <unk>

Search parameters

- > Number of nearest neighbors (k) = 100
- **Beam size =** 10

$$\blacktriangleright \lambda_{emb} = 1.0, \lambda_{LM} = 0.1$$

Results

BLEU [%] scores on WMT tasks

	newstest2016		newstest2014	
System	de-en	en-de	fr-en	en-fr
Word-by-Word	11.1	6.7	10.6	7.8
+ LM	14.5	9.9	13.6	10.9
+ Denoising	17.2	11.0	16.5	13.9
[Lample & Denoyer ⁺ 18]	13.3	9.6	14.3	15.1
[Artetxe & Labaka ⁺ 18]	-	-	15.6	15.1

Conclusion

Fully unsupervised MT system with cross-lingual word embedding

- Beam search with LM for context-aware lexicon choice
- Denoising autoencoder for insertion/deletion/local reordering
- Simple to implement and fast to train
- Outperforms unsupervised neural MT with iterative back-translations

Future work

- Our method to initialize unsupervised neural MT [Lample & Denoyer⁺ 18, Artetxe & Labaka⁺ 18]
- Artificial noises to regularize neural MT

Codes available at https://github.com/yunsukim86/wbw-lm/ \Rightarrow

Thank you for your attention

Yunsu Kim

kim@cs.rwth-aachen.de

http://www.hltpr.rwth-aachen.de/

Ablation Study: Denoising

▶ d_{per} : local reordering range / p_{del} : deletion probability / p_{ins} : insertion vocabulary size

$d_{\sf per}$	p_{del}	V_{ins}	B LEU [%]
2			14.7
3			14.9
5			14.9
3	0.1	15.7	
	0.3		15.1
3 0.		10	16.8
	0.1	50	17.2
		500	16.8
		5000	16.5

Ablation Study: Vocabulary

RW	THAACHEN	
	UNIVERSITY	

Vocabulary		BLEU [%]			
	Merges				
BPE	20k	10.4			
	50k	12.5			
	100k	13.0			
Cross-lingual training					
Word	20k	14.4			
	50k	14.4			
	100k	14.5			
	200k	14.4			

Word embedding performs better than BPE embedding

Embedding trained on 20k similar to 200k \Rightarrow Frequent words matter

References

- [Artetxe & Labaka⁺ 17] M. Artetxe, G. Labaka, E. Agirre: Learning Bilingual Word Embeddings with (Almost) No Bilingual Data. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017)*, Vol. 1, pp. 451–462, 2017.
- [Artetxe & Labaka⁺ 18] M. Artetxe, G. Labaka, E. Agirre, K. Cho: Unsupervised Neural Machine Translation. In *Proceedings of 6th International Conference on Learning Representations (ICLR 2018)*, 2018.
- [Conneau & Lample⁺ 18] A. Conneau, G. Lample, M. Ranzato, L. Denoyer, H. Jégou: Word Translation Without Parallel Data. In *Proceedings of 6th International Conference on Learning Representations (ICLR 2018)*, 2018.
- [Hill & Cho⁺ 16] F. Hill, K. Cho, A. Korhonen: Learning Distributed Representations of Sentences from Unlabelled Data. In *Proceedings of the 15th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2016)*, pp. 1367–1377, 2016.
- [Koehn & Knowles 17] P. Koehn, R. Knowles: Six Challenges for Neural Machine Translation. In *Proceedings of the 1st ACL Workshop on Neural Machine*

Translation (WNMT 2017), pp. 28–39, 2017.

[Lample & Denoyer⁺ 18] G. Lample, L. Denoyer, M. Ranzato: Unsupervised Machine Translation Using Monolingual Corpora Only. In *Proceedings of 6th International Conference on Learning Representations (ICLR 2018)*, 2018.

EMNLP 2018, November 2, 207